1887

Abstract

Eight Gram-stain-negative bacteria (B4199, C6819, C6918, D2441, D3318, E1086, E1148 and E5571) were identified during a retrospective study of unidentified strains from a historical collection held in the Special Bacteriology Reference Laboratory at the Centers for Disease Control and Prevention. The strains were isolated from eight patients: five female, two male and one not specified. No ages were indicated for the patients. The sources were urine (3), leg tissue (2), foot wound, lung tissue and deep liver. The strains originated from seven different states across the USA [Colorado, Connecticut (2), Indiana, North Carolina, Oregon and Pennsylvania]. The strains grew at 10–42 °C, were non-motile, alkalitolerant, slightly halophilic, microaerophilic, and catalase- and oxidase-positive. The DNA G+C content was 47.3–47.6 mol%. The major cellular fatty acids were tetradecanoic acid (C), hexadecanoic acid (C) and 11-octadecenoic acid (Cω7). Polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and unknown phospholipids; the only respiratory quinone detected was the ubiquinone Q-9 (100 %). 16S rRNA gene sequence analysis produced results with 95.6 % similarity to DSM 24390 and 95.2 % similarity to X2. The results of the biochemical, chemotaxonomic and phylogenetic analyses between the study strains and some related type strains indicated that these strains represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is B4199(=DSM 100830=CCUG 67636).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001147
2016-08-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3063.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001147&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H.. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol50:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  2. Auch A. F., Klenk H. P., Göker M.. 2010; Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  3. Auch A. F., Von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evol39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Gee J. E., Sacchi C. T., Glass M. B., De B. K., Weyant R. S., Levett P. N., Whitney A. M., Hoffmaster A. R., Popovic T.. 2003; Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei . J Clin Microbiol41:4647–4654 [CrossRef][PubMed]
    [Google Scholar]
  9. Hespell R. B.. 1977; Serpens flexibilis gen. nov., sp. nov., an unusually flexible, lactate-Oxidizing bacterium. Int J Syst Bacteriol27:371–381 [CrossRef]
    [Google Scholar]
  10. Lauer A. C., Nicholson A. C., Humrighouse B., Emery B., Drobish A., Loparev V., McQuiston J. R.. 2015; Genome sequences of Oblitimonas alkaliphila gen. nov. sp. nov. a novel bacterium of the Pseudomonadaceae family. Genome Announc3:1–2[CrossRef]
    [Google Scholar]
  11. Lenneman E. M., Barney B. M.. 2014; Draft genome sequences of the alga-degrading bacteria Aeromonas hydrophila strain AD9 and Pseudomonas pseudoalcaligenes strain AD6. Genome Announc2:1–2 [CrossRef]
    [Google Scholar]
  12. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  13. Mollenhauer H. H.. 1964; Plastic embedding mixtures for use in electron microscopy. Stain Technol39:111–114[PubMed]
    [Google Scholar]
  14. Morey R. E., Galloway R. L., Bragg S. L., Steigerwalt A. G., Mayer L. W., Levett P. N.. 2006; Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. J Clin Microbiol44:3510–3516 [CrossRef][PubMed]
    [Google Scholar]
  15. Palleroni N. J.. 1981; Introduction to the family Pseudomonadaceae . In The Prokaryotes pp3071–3085 Edited by Barlows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York, NY: Springer-Verlag;
    [Google Scholar]
  16. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc NatlAcad Sci USA106:19126–19131 [CrossRef]
    [Google Scholar]
  17. Romanenko L. A., Uchino M., Falsen E., Lysenko A. M., Zhukova N. V., Mikhailov V. V.. 2005; Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol51:65–71 [CrossRef][PubMed]
    [Google Scholar]
  18. Saha R., Spröer C., Beck B., Bagley S.. 2010; Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonasoleovorans ATCC 8062T . Curr Microbiol60:294–300 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  20. Santopolo L., Marchi E., Decorosi F., Galardini M., Brilli M., Giovannetti L., Viti C.. 2013; Draft genome sequence of chromate-resistant and biofilm-producing strain Pseudomonas alcaliphila 34. Genome Announc1:1–2 [CrossRef]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note #101 Revised 2001. MIDI Inc Newark, NJ:
    [Google Scholar]
  22. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526[PubMed]
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  24. Tan W. B., Jiang Z., Chen C., Yuan Y., Gao L. F., Wang H. F., Cheng J., Li W. J., Wang A. J.. 2015; Thiopseudomonas denitrificans gen. nov., sp. nov., isolated from anaerobic activated sludge. Int J Syst Evol Microbiol65:225–229 [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  26. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  27. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. 2007; Phenotypic characterizations and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington DC: ASM Press;
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  29. Weyant R. S., Moss C. W., Weaver R. E., Hollis D. G., Jordan J. J., Cook E. C., Daneshvar M. I. 1996; Identification of unusual pathogenic gram-negative Aerobic and Facultatively Anaerobic Bacteria, 2nd edn. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  30. Wuyts J., Van de Peer Y., Winkelmans T., De Wachter R.. 2002; The European database on small subunit ribosomal RNA. Nucleic Acids Res30:183–185 [CrossRef][PubMed]
    [Google Scholar]
  31. Xiao Y. P., Hui W., Wang Q., Roh S. W., Shi X. Q., Shi J. H., Quan Z. X.. 2009; Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an Anaerobic Ammonium-Oxidizing bioreactor. Int J Syst Evol Microbiol59:2594–2598 [CrossRef][PubMed]
    [Google Scholar]
  32. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  33. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K.. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol51:349–355 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001147
Loading
/content/journal/ijsem/10.1099/ijsem.0.001147
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error