gen. nov., sp. nov., an anaerobic, lactate-producing member of the family isolated from human faeces Free

Abstract

Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1 and 668, were characterized by mesophilic fermentative metabolism, production of -lactic acid, succinic acid and acetic acid as end products of -glucose fermentation, prevalence of C 9, C 9 aldehyde, C and C 7 fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4–56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Fae, 91.3/91.2 % with ATCC 27749 and 88.9/88.8 % with ATCC 27768. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is 585-1 (=DSM 100348=VKM B-2901).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001143
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3041.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001143&mimeType=html&fmt=ahah

References

  1. Angiuoli S. V., Gussman A., Klimke W., Cochrane G., Field D., Garrity G., Kodira C. D., Kyrpides N., Madupu R. et al. 2008; Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 12:137–141 [View Article][PubMed]
    [Google Scholar]
  2. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T. et al. 2011; Enterotypes of the human gut microbiome. Nature 473:174–180 [View Article][PubMed]
    [Google Scholar]
  3. Cato E. P., Salmon C. W., Moore W. E. C. 1974; Fusobacterium prausnitzii moore and holdeman: emended description and designation of neotype strain. Int J Syst Bacteriol 24:225–229 [CrossRef]
    [Google Scholar]
  4. Collins M. D. 1985; Analysis of isoprenoid quinones. In Methods in Microbiology vol. 18 pp. 329–366 Edited by Gottschalk G. New York: Academic Press;
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [View Article][PubMed]
    [Google Scholar]
  6. De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. 2009 Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 The Firmicutes. New York: NY: Springer-Verlag;
    [Google Scholar]
  7. Duda V. I., Suzina N. E., Esikova T. Z., Akimov V. N., Oleinikov R. R., Polivtseva V. N., Abashina T. N., Shorokhova A. P., Boronin A. M. 2009; A cytological characterization of the parasitic action of ultramicrobacteria NF1 and NF3 of the genus Kaistia on chemoorganotrophic and phototrophic bacteria. FEMS Microbiol Ecol 69:180–193 [View Article][PubMed]
    [Google Scholar]
  8. Duncan S. H., Hold G. L., Harmsen H. J., Stewart C. S., Flint H. J. 2002; Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52:2141–2146 [View Article][PubMed]
    [Google Scholar]
  9. Edgar R. C. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence ;limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Gossling J., Moore W. E. C. 1975; Gemmiger formicilis, n.gen., n.sp., an anaerobic budding bacterium from intestines. Int J Syst Bacteriol 25:202–207 [View Article]
    [Google Scholar]
  12. Grech-Mora I., Fardeau M.-L., Patel B. K. C., Ollivier B., Rimbault A., Prensier G., Garcia J.-L., Garnier-Sillam E. 1996; Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. Int J Syst Bacteriol 46:512–518 [View Article]
    [Google Scholar]
  13. Holdeman L. V., Moore W. E. C. 1973 Anaerobe Laboratory Manual, 2nd edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  14. Holmstrøm K., Collins M. D., Moller T., Falsen E., Lawson. P. A. 2004; Subdoligranulum variabile gen. nov., sp. nov from human feces. Anaerobe 10:197–203 [CrossRef]
    [Google Scholar]
  15. Jantzen E., Hofstad T. 1981; Fatty acids of Fusobacterium species: taxonomic implications. J Gen Microbiol 123:163–171 [View Article]
    [Google Scholar]
  16. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282 [View Article][PubMed]
    [Google Scholar]
  17. Khan M. T., Duncan S. H., Stams A. J., Van Dijl J. M., Flint H. J., Harmsen H. J. 2012; The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 6:1578–1585 [View Article][PubMed]
    [Google Scholar]
  18. Lawson P. A., Rainey F. A. 2016; Proposal to restrict the genus Clostridium (Prazmowski) to Clostridium butyricum and related species. Int J Syst Evol Microbiol 66:1009–1016 [CrossRef]
    [Google Scholar]
  19. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. 2006; Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023 [View Article][PubMed]
    [Google Scholar]
  20. Li E., Hamm C. M., Gulati A. S., Sartor R. B., Chen H., Wu X., Zhang T., Rohlf F. J., Zhu W. et al. 2012; Inflammatory Bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human Ileum associated microbial composition. PLoS One 7:e26284 [View Article]
    [Google Scholar]
  21. Li L., Stoeckert C. J., Roos D. S. 2003; OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189 [View Article][PubMed]
    [Google Scholar]
  22. Li M., Wang B., Zhang M., Rantalainen M., Wang S., Zhou H., Zhang Y., Shen J., Pang X. et al. 2008; Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105:2117–2122 [View Article][PubMed]
    [Google Scholar]
  23. Louis P., Flint H. J. 2009; Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8 [View Article][PubMed]
    [Google Scholar]
  24. Minato H., Ishibashi S., Hamaoka T. 1988; Cellular fatty acid and sugar composition of representative strains of rumen bacteria. J Gen Appl Microbiol 34:303–319 [CrossRef]
    [Google Scholar]
  25. Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M. 2007; KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185 [View Article][PubMed]
    [Google Scholar]
  26. Quévrain E., Maubert M. A., Michon C., Chain F., Marquant R., Tailhades J., Miquel S., Carlier L. et al. 2016; Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 65:415–425 [View Article][PubMed]
    [Google Scholar]
  27. Rainey F. A. 2009; Ruminococcaceae fam. nov. In The Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3, Edited by Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. New York: Springer-Verlag;
    [Google Scholar]
  28. Richter M., Rosselló-Móra R., Oliver Glöckner F., Peplies J. 2016; JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931 [View Article][PubMed]
    [Google Scholar]
  29. Roper J. M., Raux E., Brindley A. A., Schubert H. L., Gharbia S. E., Shah H. N., Warren M. J. 2000; The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. J Biol Chem 275:40316–40323 [View Article][PubMed]
    [Google Scholar]
  30. Rossi O., Khan M. T., Schwarzer M., Hudcovic T., Srutkova D., Duncan S. H., Stolte E. H., Kozakova H., Flint H. J. et al. 2015; Faecalibacterium prausnitzii strain HTF-F and Its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS One 10:e0123013 [View Article][PubMed]
    [Google Scholar]
  31. Salanitro J. P., Muirhead P. A., Goodman J. R. 1976; Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl Environ Microbiol 32:623–632[PubMed]
    [Google Scholar]
  32. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  33. Schumann P. 2011; Peptidoglycan structure. In Taxonomy of Prokaryotes, Methods in Microbiology vol. 38 pp 101–129 Edited by Rainey F., Oren A. London: Academic Press; [CrossRef]
    [Google Scholar]
  34. Shkoporov A. N., Chaplin A. V., Khokhlova E. V., Shcherbakova V. A., Motuzova O. V., Bozhenko V. K., Kafarskaia L. I., Efimov B. A. 2015; Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 65:4580–4588 [View Article][PubMed]
    [Google Scholar]
  35. Sijpesteijn A. K. 1948 Cellulose-Decomposing Bacteria From the Rumen of Cattle Leiden University; Leiden: Eduard Ijdo N.V:
    [Google Scholar]
  36. Sokol H., Seksik P., Furet J. P., Firmesse O., Nion-Larmurier I., Beaugerie L., Cosnes J., Corthier G., Marteau P. et al. 2009; Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189 [View Article][PubMed]
    [Google Scholar]
  37. Stamatakis A. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  38. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  39. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  40. Van Gelder A. H., Sousa D. Z., Rijpstra W. I., Damsté J. S., Stams A. J., Sánchez-Andrea I. 2014; Ercella succinigenes gen. nov., sp. nov., an anaerobic succinate-producing bacterium. Int J Syst Evol Microbiol 64:2449–2454 [View Article][PubMed]
    [Google Scholar]
  41. Wozny M. A., Bryant M. P., Holdeman L. V., Moore W. E. 1977; Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl Environ Microbiol 33:1097–1104[PubMed]
    [Google Scholar]
  42. Yanagita K., Manome A., Meng X. Y., Hanada S., Kanagawa T., Tsuchida T., Mackie R. I., Kamagata Y. 2003; Flow cytometric sorting, phylogenetic analysis and in situ detection of Oscillospira guillermondii, a large, morphologically conspicuous but uncultured ruminal bacterium. Int J Syst Evol Microbiol 53:1609–1614 [View Article][PubMed]
    [Google Scholar]
  43. Yutin N., Galperin M. Y. 2013; A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15:2631–2641 [View Article][PubMed]
    [Google Scholar]
  44. Zellner G., Stackebrandt E., Nagel D., Messner P., Weiss N., Winter J. 1996; Anaerofilum pentosovorans gen. nov., sp. nov., and Anaerofilum agile sp. nov., two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors. Int J Syst Bacteriol 46:871–875 [View Article][PubMed]
    [Google Scholar]
  45. Zhilina T. N., Zavarzina D. G., Panteleeva A. N., Osipov G. A., Kostrikina N. A., Tourova T. P., Zavarzin G. A. 2012; Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62:1666–1673 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001143
Loading
/content/journal/ijsem/10.1099/ijsem.0.001143
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed