1887

Abstract

Two novel members of the bacterial phylum ‘ Verrucomicrobia ’, strains CAG34 and CV41, were isolated from the guts of Cephalotes rohweri and Cephalotes varians ants, respectively. Strains CAG34 and CV41 were coccoid, Gram-stain-negative, non-motile, and formed cream-coloured colonies on trypticase soy agar. Optimum growth occurred under an atmosphere of 12–20 % O2 and 1 % CO2 for both strains, although strain CV41 could not grow without supplemental CO2. Growth was possible under NaCl concentrations of 0.5–1.5 % (w/v) and temperatures of 23–37 °C for both strains, and pH values of 6.9–7.7 for strain CAG34 and 6.9–7.3 for strain CV41. The G+C content of the genomic DNA was 60.7 mol% for strain CAG34 and 60.5 mol% for strain CV41. The major fatty acids for both strains were anteiso-C15 : 0, iso-C14 : 0, C16 : 0, and C16 : 1 ω5c. Based on the phylogenetic analysis of 16S rRNA gene sequences, the closest cultivated relative for both strains was the type strain of Opitutus terrae (91.8 % similarity). Hence, strains CAG34 and CV41 are considered to represent a new genus within the ‘ Verrucomicrobia' family Opitutaceae , for which we propose the name Cephaloticoccus gen. nov. Given that strains CAG34 and CV41 share 97.7 % 16S rRNA gene sequence similarity with each other and are physiologically distinct, we propose to classify the isolates as representing two novel species, Cephaloticoccus primus sp. nov. for strain CAG34 (=NCIMB 15004 =ATCC TSD-38) and Cephaloticoccus capnophilus sp. nov. for strain CV41 (=NCIMB 15005 =ATCC TSD-39 =DSM 100879).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001141
2016-08-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3034.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001141&mimeType=html&fmt=ahah

References

  1. Anderson K. E. , Russell J. A. , Moreau C. S. , Kautz S. , Sullam K. E. , Hu Y. , Basinger U. , Mott B. M. , Buck N. et al. ( 2012;). Highly similar microbial communities are shared among related and trophically similar ant species. . Mol Ecol 21: 2282–2296. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baker G. C. , Smith J. J. , Cowan D. A. . ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55: 541–555.[PubMed] [CrossRef]
    [Google Scholar]
  3. Bergmann G. T. , Bates S. T. , Eilers K. G. , Lauber C. L. , Caporaso J. G. , Walters W. A. , Knight R. , Fierer N. . ( 2011;). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. . Soil Biol Biochem 43: 1450–1455. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bolger A. M. , Lohse M. , Usadel B. . ( 2014;). Trimmomatic: a flexible trimmer for Illumina sequence data. . Bioinformatics 30: 2114–2120. [CrossRef] [PubMed]
    [Google Scholar]
  5. Breznak J. A. , Costilow R. N. . ( 2007;). Physicochemical factors in growth. . In Methods Gen Mol Microbiol, , 3rd edn., pp. 309–329. Edited by Marzluf G. A. , Reddy C. A. , Beveridge T. J. , Schmidt T. M. , Snyder L. R. , Breznak. J. A. . American Society of Microbiology;.
    [Google Scholar]
  6. Chin K. J. , Liesack W. , Janssen P. H. . ( 2001;). Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division 'Verrucomicrobia' isolated from rice paddy soil. . Int J Syst Evol Microbiol 51: 1965–1968. [CrossRef] [PubMed]
    [Google Scholar]
  7. Choo Y. J. , Lee K. , Song J. , Cho J. C. . ( 2007;). Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia'. . Int J Syst Evol Microbiol 57: 532–537. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dereeper A. , Guignon V. , Blanc G. , Audic S. , Buffet S. , Chevenet F. , Dufayard J. F. , Guindon S. , Lefort V. et al. ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: W465–W469. [CrossRef] [PubMed]
    [Google Scholar]
  9. Derrien M. , Vaughan E. E. , Plugge C. M. , de Vos W. M. . ( 2004;). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. . Int J Syst Evol Microbiol 54: 1469–1476. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dillon R. J. , Dillon V. M. . ( 2004;). The gut bacteria of insects: nonpathogenic interactions. . Annu Rev Entomol 49: 71–92. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fierer N. , Ladau J. , Clemente J. C. , Leff J. W. , Owens S. M. , Pollard K. S. , Knight R. , Gilbert J. A. , McCulley R. L. . ( 2013;). Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. . Science 342: 621–624. [CrossRef] [PubMed]
    [Google Scholar]
  12. Freitas S. , Hatosy S. , Fuhrman J. A. , Huse S. M. , Welch D. B. , Sogin M. L. , Martiny A. C. , Mark Welch D. B. . ( 2012;). Global distribution and diversity of marine Verrucomicrobia . . ISME J 6: 1499–1505. [CrossRef] [PubMed]
    [Google Scholar]
  13. Guindon S. , Lethiec F. , Duroux P. , Gascuel O. . ( 2005;). PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. . Nucleic Acids Res 33: W557–W559. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hedlund B. P. , Gosink J. J. , Staley J. T. . ( 1997;). Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter . . Antonie Van Leeuwenhoek 72: 29–38.[PubMed] [CrossRef]
    [Google Scholar]
  15. Hedlund B. P. . ( 2010;). Phylum XXIII. Verrucomicrobia phyl. nov. . In Bergey’s Manual Syst Bacteriol, pp. 795–841. Edited by Krieg N. R. , Staley J. T. , Brown D. R. , Hedlund B. P. , Paster B. J. , Ward N. L. , Ludwig W. , Whitman W. B. . New York:: Springer;.
    [Google Scholar]
  16. Hu Y. , Łukasik P. , Moreau C. S. , Russell J. A. . ( 2014;). Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. . Mol Ecol 23: 1284–1300. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hugenholtz P. , Goebel B. M. , Pace N. R. . ( 1998;). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. . J Bacteriol 180: 4765–4774.[PubMed]
    [Google Scholar]
  18. Kautz S. , Rubin B. E. , Russell J. A. , Moreau C. S. . ( 2013;). Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. . Appl Environ Microbiol 79: 525–534. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim M. , Oh H. S. , Park S. C. , Chun J. . ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lanan M. C. , Rodrigues P. A. , Agellon A. , Jansma P. , Wheeler D. E. . ( 2016;). A bacterial filter protects and structures the gut microbiome of an insect. . ISME J. doi:10.1038/ismej.2015.264. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lee S. Y. , Bollinger J. , Bezdicek D. , Ogram A. . ( 1996;). Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. . Appl Environ Microbiol 62: 3787–3793.[PubMed]
    [Google Scholar]
  22. Matson E. , Ottesen E. , Leadbetter J. . ( 2007;). Extracting DNA from the gut microbes of the termite (Zootermopsis nevadensis). . J Vis Exp 4: e195.
    [Google Scholar]
  23. O'Farrell K. A. , Janssen P. H. . ( 1999;). Detection of Verrucomicrobia in a pasture soil by PCR-mediated amplification of 16S rRNA genes. . Appl Environ Microbiol 65: 4280–4284.[PubMed]
    [Google Scholar]
  24. Pruesse E. , Peplies J. , Glöckner F. O. . ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28: 1823–1829. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rodrigues J. L. M. , Isanapong J. . ( 2014;). The family Opitutaceae . . In The Prokaryotes, pp. 751–756. Edited by Rosenberg E. , DeLong E. F. , Lory S. , Stackebrandt E. , Thompson F. . Berlin Heidelberg:: Springer;.
    [Google Scholar]
  26. Russell J. A. , Moreau C. S. , Goldman-Huertas B. , Fujiwara M. , Lohman D. J. , Pierce N. E. . ( 2009;). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. . Proc Natl Acad Sci USA 106: 21236–21241. [CrossRef] [PubMed]
    [Google Scholar]
  27. Sanders J. G. , Powell S. , Kronauer D. J. , Vasconcelos H. L. , Frederickson M. E. , Pierce N. E. . ( 2014;). Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. . Mol Ecol 23: 1268–1283. [CrossRef] [PubMed]
    [Google Scholar]
  28. Scheuermayer M. , Gulder T. A. , Bringmann G. , Hentschel U. . ( 2006;). Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia', isolated from a sponge (Porifera). . Int J Syst Evol Microbiol 56: 2119–2124. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tremaroli V. , Bäckhed F. . ( 2012;). Functional interactions between the gut microbiota and host metabolism. . Nature 489: 242–249. [CrossRef] [PubMed]
    [Google Scholar]
  30. Van Passel M. W. , Kant R. , Palva A. , Copeland A. , Lucas S. , Lapidus A. , Glavina del Rio T. , Pitluck S. , Goltsman E. et al. ( 2011;). Genome sequence of the verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. . J Bacteriol 193: 2367–2368. [CrossRef] [PubMed]
    [Google Scholar]
  31. Vandekerckhove T. T. , Willems A. , Gillis M. , Coomans A. . ( 2000;). Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). . Int J Syst Evol Microbiol 50: 2197–2205. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wertz J. T. , Breznak J. A. . ( 2007;). Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts. . Appl Environ Microbiol 73: 6829–6841. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wertz J. T. , Kim E. , Breznak J. A. , Schmidt T. M. , Rodrigues J. L. . ( 2012;). Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. . Appl Environ Microbiol 78: 1544–1555. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yoon J. , Yasumoto–Hirose M. , Katsuta A. , Sekiguchi H. , Matsuda S. , Kasai H. , Yokota A. . ( 2007a;). Coraliomargarita akajimensis gen. nov., sp. nov., a novel memberof the phylum ‘Verrucomicrobia’ isolated from seawater in Japan. . Int J Syst Evol Microbiol 57: 959–963. [CrossRef]
    [Google Scholar]
  35. Yoon J. , Yasumoto-Hirose M. , Matsuo Y. , Nozawa M. , Matsuda S. , Kasai H. , Yokota A. . ( 2007b;). Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum 'Verrucomicrobia', isolated from seawater by in situ cultivation. . Int J Syst Evol Microbiol 57: 1377–1385. [CrossRef]
    [Google Scholar]
  36. Yoon J. , Oku N. , Matsuda S. , Kasai H. , Yokota A. . ( 2007c;). Pelagicoccus croceus sp. nov., a novel marine member of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia' isolated from seagrass. . Int J Syst Evol Microbiol 57: 2874–2880. [CrossRef]
    [Google Scholar]
  37. Yoon J. . ( 2011;). Phylogenetic studies on the bacterial phylum ‘Verrucomicrobia . . Microbiol Cult Coll 27: 61–65.
    [Google Scholar]
  38. Zerbino D. R. , Birney E. . ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18: 821–829. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001141
Loading
/content/journal/ijsem/10.1099/ijsem.0.001141
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error