1887

Abstract

A novel dissimilatory Fe(III)-reducing bacterium, designated strain GSS09, was isolated from a compost sample by using a solid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS09 were anaerobic, Gram-stain-positive, motile, endospore-forming and rod-shaped. Growth occurred at 30–55 °C (optimum 50 °C), at pH 6.5–9.0 (optimum pH 7.5) and in the presence of 0–3 % (w/v) NaCl (optimum 1 %). Both sulfur compounds such as sulfate, sulfite and thiosulfate and Fe(III) oxides such as ferrihydrite could be utilized as electron acceptors. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS09 was related closely to Lam5 (94.5 % sequence similarity). The major fatty acids were C and C 7/C 6 The G+C content of the genomic DNA was 49.1 mol%. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS09 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GSS09 (=KCTC 15523=MCCC 1K01254).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001139
2016-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3022.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001139&mimeType=html&fmt=ahah

References

  1. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacterio Rev 29:359–363
    [Google Scholar]
  2. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  3. Gavrilov S. N., Lloyd J. R., Kostrikina N. A., Slobodkin A. I. 2012; Fe(III) oxide reduction by a gram-positive thermophile: physiological mechanisms for dissimilatory reduction of poorly crystalline fe(III) oxide by a thermophilic gram-positive bacterium Carboxydothermus ferrireducens . Geomicrobiol J 29:804–819 [View Article]
    [Google Scholar]
  4. Gibbons N. E., Murray R. G. E. 1978; Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 28:1–6 [View Article]
    [Google Scholar]
  5. Goorissen H. P., Boschker H. T., Stams A. J., Hansen T. A. 2003; Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int J Syst Evol Microbiol 53:1223–1229 [View Article][PubMed]
    [Google Scholar]
  6. Hagenauer A., Hippe H., Rainey F. A. 1997; Desulfotomaculum aeronauticum sp. nov., a sporeforming, thiosulfate-reducing bacterium from corroded Aluminium alloy in an aircraft. Syst Appl Microbiol 20:65–71 [View Article]
    [Google Scholar]
  7. Haouari O., Fardeau M. L., Cayol J. L., Casiot C., Elbaz-Poulichet F., Hamdi M., Joseph M., Ollivier B. 2008; Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58:2529–2535 [View Article][PubMed]
    [Google Scholar]
  8. Jabari L., Gannoun H., Cayol J., Hamdi M., Ollivier B., Fauque G., Fardeau M. 2013; Desulfotomaculum peckii sp. nov., a moderately thermophilic member of the genus Desulfotomaculum, isolated from an upflow anaerobic filter treating abattoir wastewaters. Int J Syst Evol Microbiol 63:2082–2087 [View Article][PubMed]
    [Google Scholar]
  9. Jacquenod C., Magot M., Patel B. K., Matheron R., Caumette P. 1998; Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338 [View Article][PubMed]
    [Google Scholar]
  10. Junier P., Junier T., Podell S., Sims D. R., Detter J. C., Lykidis A., Han C. S., Wigginton N. S., Gaasterland T., Bernier-Latmani R. 2010a; The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ Microbiol 12:2738–2754
    [Google Scholar]
  11. Junier P., Suvorova E. I., Bernier-Latmani R. 2010b; Effect of competing electron acceptors on the reduction of U(VI) by Desulfotomacilum reducens . Geomicroiol J 27:435–443 [View Article]
    [Google Scholar]
  12. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. 2006; Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608 [View Article][PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Krishnamurthi S., Spring S., Kumar P. A., Mayilraj S., Klenk H. P., Suresh K. 2013; Desulfotomaculum defluvii sp. nov., a sulfate-reducing bacterium isolated from the subsurface environment of a landfill. Int J Syst Evol Microbiol 63:2290–2295 [View Article][PubMed]
    [Google Scholar]
  15. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [View Article][PubMed]
    [Google Scholar]
  16. Li X. M., Zhou S. G., Li F. B., Wu C. Y., Zhuang L., Xu W., Liu L. 2009; Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. J Appl Microbiol 106:130–139 [View Article][PubMed]
    [Google Scholar]
  17. Lovley D. R., Holmes D. E., Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microbial Physiol 49:219–286 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  19. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402 [View Article]
    [Google Scholar]
  20. Ogg C. D., Patel B. K. 2011; Desulfotomaculum varum sp. nov., a moderately thermophilic sulfate-reducing bacterium isolated from a microbial mat colonizing a great artesian basin bore well runoff channel. 3 Biotech 1:139–149 [View Article][PubMed]
    [Google Scholar]
  21. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI;
    [Google Scholar]
  22. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Pauker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Evol Microbiol 47:1134–1139 [View Article]
    [Google Scholar]
  23. Stackebrandt E., Schumann P., Schüler E., Hippe H. 2003; Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. Int J Syst Evol Microbiol 53:1439–1443 [View Article][PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Tebo B. M., Obraztsova A. Y. 1998; Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198 [View Article]
    [Google Scholar]
  26. Vaz-Moreira I., Figueira V., Lopes A. R., Lobo-da-Cunha A., Spröer C., Schumann P., Nunes O. C., Manaia C. M. 2012; Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 62:71–77 [View Article][PubMed]
    [Google Scholar]
  27. Werkman C. H., Weaver H. J. 1927; Studies in the bacteriology of suphur stinker spoilage of canned sweet corn. Iowa State Coll J Sci 2:57–67
    [Google Scholar]
  28. Wielinga B., Mizuba M. M., Hansel C. M., Fendorf S. 2001; Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527 [View Article][PubMed]
    [Google Scholar]
  29. Wilkins M. J., Livens F. R., Vaughan D. J., Lloyd J. R. 2006; The Impact of Fe(III)-reducing bacteria on uranium mobility. Biogeochemistry 78:125–150 [View Article]
    [Google Scholar]
  30. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., Li X. M. 2010; Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiol Ecol 71:106–113 [View Article][PubMed]
    [Google Scholar]
  31. Yang G., Chen J., Zhou S. 2015; Novibacillus thermophilus gen. nov., sp. nov., a gram-staining-negative and moderately thermophilic member of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 65:2591–2597 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001139
Loading
/content/journal/ijsem/10.1099/ijsem.0.001139
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error