1887

Abstract

A polyphasic approach was used to characterize an endospore-forming bacterium, designated strain CC-RT-E, isolated from resin fragments. Strain CC-RT-E was Gram-stain-variable and facultatively anaerobic, able to grow at 20–37 °C (optimal 30 °C) and pH6.0–9.0 (optimal pH 7.0). Ellipsoidal and terminal endospores were observed. The 16S rRNA gene sequence analysis of strain CC-RT-E showed highest sequence similarity to RAOx-FS (97.8 %) and RAOx-1 (97.7 %). According to the DNA–DNA hybridization, the relatedness values of strain CC-RT-E with RAOx-FS and RAOx-1 were 21 % and 29 %, respectively. The DNA G+C content was 39.2 mol% and the predominant quinone system was menaquinone-7 (MK-7). The major polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmethylethanolamine. The cell-wall peptidoglycan contained -diaminopimelic acid. The polyamine pattern showed predominance of -homospermidine and putrescine. The major fatty acids found in strain CC-RT-E were C, iso-C, anteiso-C and C 7/C 6. Based on the distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence analysis, strain CC-RT-E is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CC-RT-E (=BCRC 80314=DSM 24738).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001137
2016-08-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3010.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001137&mimeType=html&fmt=ahah

References

  1. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp.267–287 . Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  2. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology20:406–416 [CrossRef]
    [Google Scholar]
  6. Goto K., Fujita R., Kato Y., Asahara M., Yokota A.. 2004; Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol54:419–427 [CrossRef][PubMed]
    [Google Scholar]
  7. Hameed A., Shahina M., Lin S. Y., Lai W. A., Hsu Y. H., Liu Y. C., Young C. C.. 2014; Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter . Int J Syst Evol Microbiol64:138–145 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Lai W. A., Lin S. Y., Hameed A., Hsu Y. H., Liu Y. C., Huang H. R., Shen F. T., Young C. C.. 2015; Leucobacter zeae sp. nov., isolated from the rhizosphere of maize (Zea mays L.). Int J Syst Evol Microbiol65:4734–4742 [CrossRef][PubMed]
    [Google Scholar]
  10. Lin S. Y., Liu Y. C., Hameed A., Hsu Y. H., Lai W. A., Shen F. T., Young C. C.. 2013; Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol63:3762–3768 [CrossRef][PubMed]
    [Google Scholar]
  11. Logan N. A., De Vos P.. 2009; Genus IV. Brevibacillus Shida, Takagi, Kadowaki and Komagata 1996a, 942VP. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 3 pp304–316 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Springer:
    [Google Scholar]
  12. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  14. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth2:233–241 [CrossRef]
    [Google Scholar]
  16. Montes M. J., Mercadé E., Bozal N., Guinea J.. 2004; Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol54:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  17. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determination and cytological light microscopy. In Methods for General and Molecular Bacteriology pp32–34 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Paisley R.. 1996; MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark. DE: MIDI;
    [Google Scholar]
  19. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. 1955; The behavior of the isomers of diaminopimelic acid on paper chromatograms. J Am Chem Soc77:4844–4846 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  22. Scherer P., Kneifel H.. 1983; Distribution of polyamines in methanogenic bacteria. J Bacteriol154:1315–1322[PubMed]
    [Google Scholar]
  23. Seldin L., Dubnau D.. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing bacillus strains. Int J Syst Bacteriol35:151–154 [CrossRef]
    [Google Scholar]
  24. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  25. Shida O., Takagi H., Kadowaki K., Yano H., Abe M., Udaka S., Komagata K.. 1994; Bacillus aneurinolyticus sp. nov., nom. rev. Int J Syst Bacteriol44:143–150 [CrossRef]
    [Google Scholar]
  26. Takeda M., Suzuki I., Koizumi J.. 2005; Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans . Int J Syst Evol Microbiol55:737–741 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol37:463–464 [CrossRef]
    [Google Scholar]
  30. Yao R., Wang R., Wang D., Su J., Zheng S., Wang G.. 2014; Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol64:805–811 [CrossRef][PubMed]
    [Google Scholar]
  31. Zaitsev G. M., Tsitko I., Rainey F. A., Trotsenko Y. A., Uotila J. S., Stackebrandt E., Salkinoja-Salonen M. S.. 1998; New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. Int J Syst Bacteriol48:151–163 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001137
Loading
/content/journal/ijsem/10.1099/ijsem.0.001137
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error