1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile, strictly aerobic, chemoheterotrophic, pale-yellow-pigmented bacterium, designated strain A6D-50, was isolated from an ascidian collected at Kohama Island offshore Okinawa, Japan. Preliminary analysis based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it showed highest sequence similarity (97.6 %) to Aureisphaera galaxeae 04OKA003-7. The DNA–DNA relatedness value between strain A6D-50 and A. galaxeae 04OKA003-7 was 23.6 %. The DNA G+C content of strain A6D-50 was 40.8 mol%, MK-6 was the only menaquinone, and iso-C17  : 0 3-OH, iso-C15 : 0, iso-C15  : 1 G and summed feature 3 (C16 : 1 ω7c and/or C1 6  :  1 ω6c) were the major (>10 %) cellular fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminolipids and an unidentified lipid. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Aureisphaera for which the name Aureisphaera salina sp. nov. is proposed. The type strain is A6D-50 (= KCTC 42975=NBRC 111827).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001132
2016-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2999.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001132&mimeType=html&fmt=ahah

References

  1. Bernardet J. F. , Segers P. , Vancanneyt M. , Berthe F. , Kersters K. , Vandamme P. . ( 1996;). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl & Tait, 1978). . Int J Syst Bacteriol 46: 128–148.[CrossRef]
    [Google Scholar]
  2. Bernardet J. F. , Nakagawa Y. , Holmes B. . ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52: 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernardet J. F. , Nakagawa Y. . ( 2003;). An introduction to the family Flavobacteriaceae. . In The Prokaryotes, An Evolving Electronic Resource for the Microbiological Community, Release 3.15. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . New York:: Springer;.
    [Google Scholar]
  4. Bernardet J. F. . ( 2011;). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 4 106–111. Edited by Krieg N. R. , Ludwig W. , Whitman W. B. , Hedlund B. P. , Paster B. J. , Staley J. T. , Ward N. , Brown D. , Parte A. . New York:: Springer;.
    [Google Scholar]
  5. Brettar I. , Christen R. , Höfle M. G. . ( 2004;). Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. . Int J Syst Evol Microbiol 54: 2335–2341. [CrossRef] [PubMed]
    [Google Scholar]
  6. Collins M. D. , Jones D. . ( 1981;). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. . J Appl Bacteriol 51: 129–134.[PubMed] [CrossRef]
    [Google Scholar]
  7. Collins C. H. , Lyne P. M. . ( 1984;). Microbiological Methods, , 5th edn., London:: Butterworth;.
    [Google Scholar]
  8. Dittmer J. C. , Lester R. L. . ( 1964;). A simple, specific spray for the detection of phospholipids on thin-layer chromoatograms. . J Lipid Res 15: 126–127.
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M. . ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416.[CrossRef]
    [Google Scholar]
  11. Garrity G. M. , Holt J. G. . ( 2001;). The road map to the manual. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 1 119–166. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . New York:: Springer;.[CrossRef]
    [Google Scholar]
  12. Hansen G. H. , Sørheim R. . ( 1991;). Improved method for phenotypical characterization of marine bacteria. . J Microbiol Methods 13: 231–241.[CrossRef]
    [Google Scholar]
  13. Hertel C. , Schmidt G. , Fischer M. , Oellers K. , Hammes W. P. . ( 1998;). Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. . Appl Environ Microbiol 64: 1359–1365.[PubMed]
    [Google Scholar]
  14. Jooste P. J. . ( 1985;). The taxonomy and significance of Flavobacterium–Cytophaga strains from dairy sources. PhD thesis, University of the Orange Free State, South Africa. .
  15. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  17. Kirchman D. L. . ( 2002;). The ecology of Cytophaga-Flavobacteria in aquatic environments. . FEMS Microbiol Ecol 39: 91–100. [CrossRef] [PubMed]
    [Google Scholar]
  18. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  19. Ludwig W. , Klenk H. P. . ( 2001;). Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 1pp. 49–66 . Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . New York:: Springer;.[CrossRef]
    [Google Scholar]
  20. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218.[CrossRef]
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167.[CrossRef]
    [Google Scholar]
  22. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Meth 2: 233–241.[CrossRef]
    [Google Scholar]
  23. O'Sullivan L. A. , Rinna J. , Humphreys G. , Weightman A. J. , Fry J. C. . ( 2006;). Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. . Int J Syst Evol Microbiol 56: 169–180. [CrossRef] [PubMed]
    [Google Scholar]
  24. Perry L. B. . ( 1973;). Gliding motility in some non-spreading flexibacteria. . J Appl Microbiol 36: 227–232.
    [Google Scholar]
  25. Reichenbach H. . ( 1992;). The order Cytophagales. . In The Prokaryotes. a Handbook On the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications , , 2nd edn., pp. 3631–3675 . Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . New York:: Springer;.
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  28. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849.[CrossRef]
    [Google Scholar]
  29. Suzuki K. , Kaneko T. , Komagata K. . ( 1981;). Deoxyribonucleic acid homologies among coryneform bacteria. . Int J Syst Bacteriol 31: 131–138.[CrossRef]
    [Google Scholar]
  30. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882.[PubMed] [CrossRef]
    [Google Scholar]
  32. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703.[PubMed]
    [Google Scholar]
  33. Worliczek H. L. , Kämpfer P. , Rosengarten R. , Tindall R. B. J. , Busse H. J. . ( 2007;). Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 30: 355–370. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yoon J. , Matsuo Y. , Matsuda S. , Adachi K. , Kasai H. , Yokota A. . ( 2007;). Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’, isolated from marine sand. . Int J Syst Evol Microbiol 57: 2067–2072. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yoon J. , Yasumoto-Hirose M. , Kasai H. . ( 2015;). Aureisphaera galaxeae gen. nov., sp. nov., a marine member of the family Flavobacteriaceae isolated from the hard coral Galaxea fascicularis. . Antonie Van Leeuwenhoek 107: 1379–13. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zeng Y. X. , Zhang F. , He J. F. , Lee S. H. , Qiao Z. Y. , Yu Y. , Li H. R. . ( 2013;). Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. . Antonie Van Leeuwenhoek 103: 1309–1319. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001132
Loading
/content/journal/ijsem/10.1099/ijsem.0.001132
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error