1887

Abstract

Members of the phylum are abundant in a wide variety of soil environments. Despite this, previous cultivation attempts have frequently failed to retrieve representative phylotypes of which have, therefore, been discovered by culture-independent methods (13175 acidobacterial sequences in the SILVA database version 123; NR99) and only 47 species have been described so far. Strain Ac_5_C6 represents the first isolate of the globally widespread and abundant subdivision 6 and is described in the present study. Cells of strain Ac_5_C6 were Gram-stain-negative, immotile rods that divided by binary fission. They formed yellow, extremely cohesive colonies and stable aggregates even in rapidly shaken liquid cultures. Ac_5_C6 was tolerant of a wide range of temperatures (12–40 °C) and pH values (4.7–9.0). It grew chemoorganoheterotrophically on a broad range of substrates including different sugars, organic acids, nucleic acids and complex proteinaceous compounds. The major fatty acids of Ac_5_C6 were iso-C ω9, C ω7 and iso-C. Summed feature 3 (C ω7/C ω6 iso-C and C were also detected. Phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid were identified as polar lipids. The major quinone was MK-8. The DNA G+C content of Ac_5_C6 was 65.9 mol%. With 16S rRNA gene sequence similarities of 83–84 %, the closest described relatives were KA1, 161, TPB6011, 277 and P105. According to the morphological, physiological and molecular characteristics, the novel genus gen. nov., and the novel species, sp. nov. (type strain Ac_5_C6= DSM 29464 = LMG 29035) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001131
2016-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2971.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001131&mimeType=html&fmt=ahah

References

  1. Angle J. S., Stephen P., McGrath S. P., Chaney R. L.. 1991; New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol57:3674–3676[PubMed]
    [Google Scholar]
  2. Baik K. S., Choi J. S., Kwon J., Park S. C., Hwang Y. M., Kim M. S., Kim E. M., Seo D. C., Cho J. S. et al. 2013; Terriglobus aquaticus sp. nov., isolated from an artificial reservoir. Int J Syst Evol Microbiol63:4744–4749 [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev43:260–296[PubMed]
    [Google Scholar]
  4. Barns S. M., Takala S. L., Kuske C. R.. 1999; Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol65:1731–1737[PubMed]
    [Google Scholar]
  5. Barns S. M., Cain E. C., Sommerville L., Kuske C. R.. 2007; Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol73:3113–3116 [CrossRef][PubMed]
    [Google Scholar]
  6. Bast E.. 2011; Mikrobiologische Methoden Eine Einführung in Grundlegende Arbeitstechniken , 3rd edn. Heidelberg: Spektrum (in German);
    [Google Scholar]
  7. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  8. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proceedings Natl Acad Sci 423 USA75:4801–4805 [CrossRef]
    [Google Scholar]
  9. Bryant D. A., Costas A. M., Maresca J. A., Chew A. G., Klatt C. G., Bateson M. M., Tallon L. J., Hostetler J., Nelson W. C. et al. 2007; Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium . Science317:523–526 [CrossRef][PubMed]
    [Google Scholar]
  10. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  11. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R.. 1999; Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a Hydrocarbon-contaminated aquifer. Int J Syst Bacteriol49:1615–1622 [CrossRef][PubMed]
    [Google Scholar]
  12. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  13. Cowan S. T.. 1974; Cowan and Steel’s Manual for the Identification of Medical Bacteria, 2nd edn. Cambridge, New York: Cambridge University Press;
    [Google Scholar]
  14. Cowan S. T., Steel K. J., Barrow G. I., Feltham R. K. A.. 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge, New York: Cambridge University Press;
    [Google Scholar]
  15. Crowe M. A., Power J. F., Morgan X. C., Dunfield P. F., Lagutin K., Rijpstra W. I., Rijpstra I. C., Vyssotski G. N., Sinninghe Damste J. S. et al. 2014; Pyrinomonas Methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. Int J Syst Evol Microbiol64:220–227 [CrossRef][PubMed]
    [Google Scholar]
  16. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I., Damsté J. S., Sinninghe Damsté J. S.. 2012; Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a Methanotrophic enrichment culture, and emended description of Edaphobacter Aggregans Koch et al. 2008. Int J Syst Evol Microbiol62:654–664 [CrossRef][PubMed]
    [Google Scholar]
  17. Eichorst S. A., Breznak J. A., Schmidt T. M.. 2007; Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria . App Environ Microbiol 73:2708–2717 [CrossRef]
    [Google Scholar]
  18. Fierer N., Morse J. L., Berthrong S. T., Bernhardt E. S., Jackson R. B.. 2007; Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology88:2162–2173 [CrossRef][PubMed]
    [Google Scholar]
  19. Foesel B. U., Rohde M., Overmann J.. 2013; Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol36:82–89 [CrossRef][PubMed]
    [Google Scholar]
  20. Foesel B. U., Nägele V., Naether A., Wüst P. K., Weinert J., Bonkowski M., Lohaus G., Polle A., Alt F. et al. 2014; Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils. Environ Microbiol16:658–675 [CrossRef][PubMed]
    [Google Scholar]
  21. Foesel B. U., Mayer S., Luckner M., Wanner G., Rohde M., Overmann J.. 2015; Occallatibacter riparius gen. nov., sp. nov. and O. savannae sp. nov. two novel Acidobacterial species isolated from Namibian soils and emended description of the family Acidobacteriaceae . Int J Syst Evol Microbiol Doi: 10.1099/ijsem.0.000700
    [Google Scholar]
  22. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama S.. 2008; Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria'. Int J Syst Evol Microbiol58:2597–2601 [CrossRef][PubMed]
    [Google Scholar]
  23. Garcia-Fraile P., Benada O., Cajthaml T., Lladó S.. 2015; Terracidiphilus gabretensis gen. nov., sp. nov.: an abundant and active forest soil Acidobacteria important in organic matter transformation. Appl Env Microbiol Doi: 10.1128/AEM.03353-15
    [Google Scholar]
  24. George I. F., Hartmann M., Liles M. R., Agathos S. N.. 2011; Recovery of as-yet-uncultured soil Acidobacteria on dilute solid media. Appl Environ Microbiol77:8184–8188 [CrossRef][PubMed]
    [Google Scholar]
  25. Gerhardt P.. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Huber K. J., Wüst P. K., Rohde M., Overmann J., Foesel B. U.. 2014; Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol64:1866–1875 [CrossRef][PubMed]
    [Google Scholar]
  27. Hugenholtz P., Goebel B. M., Pace N. R.. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol180:4765–4774[PubMed]
    [Google Scholar]
  28. Izumi H., Nunoura T., Miyazaki M., Mino S., Toki T., Takai K., Sako Y., Sawabe T., Nakagawa S.. 2012; Thermotomaculum hydrothermale gen. nov., sp. nov., a novel Heterotrophic thermophile within the phylum Acidobacteria from a deep-sea Hydrothermal vent chimney in the southern Okinawa trough. Extremophiles16:245–253 [CrossRef][PubMed]
    [Google Scholar]
  29. Janssen P. H., Yates P. S., Grinton B. E., Taylor P. M., Sait M.. 2002; Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia . Appl Environ Microbiol68:2391–2396 [CrossRef][PubMed]
    [Google Scholar]
  30. Janssen P. H.. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol72:1719–1728 [CrossRef][PubMed]
    [Google Scholar]
  31. Jiang Y-W., Wang J., Chen M.-H., Lv Y.-Y., Li-hong Qiu L.-H.. 2015; Acidipila dinghuensis sp. nov., a novel Acidobacterium isolated from forest soil. Int J Syst Evol Microbiol Doi:10.1099/ijsem.0.000676
    [Google Scholar]
  32. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N.. 2009; A comprehensive survey of soil Acidobacterial diversity using pyrosequencing and clone library analyses. ISME J3:442–453 [CrossRef][PubMed]
    [Google Scholar]
  33. Kishimoto N., Kosako Y., Tano T.. 1991; Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [CrossRef]
    [Google Scholar]
  34. Koch I. H., Gich F., Dunfield P. F., Overmann J.. 2008; Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., Acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol58:1114–1122 [CrossRef][PubMed]
    [Google Scholar]
  35. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N.. 2010; Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria . Int J Syst Evol Microbiol60:301–306 [CrossRef][PubMed]
    [Google Scholar]
  36. Kulichevskaya I. S., Kostina L. A., Valásková V., Rijpstra W. I., Damsté J. S., Boer W. de., Dedysh S. N.. 2012; Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol62:1512–1520 [CrossRef][PubMed]
    [Google Scholar]
  37. Kulichevskaya I. S., Suzina N. E., Rijpstra W. I., Sinninghe Damsté J. S., Dedysh S. N., Damsté S.. 2014; Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the Acidobacteria . Int J Syst Evol Microbiol64:2857–2864 [CrossRef][PubMed]
    [Google Scholar]
  38. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics115–175 Edited by Stackebrandt E., Goodfellow M.. New York: John Wiley and Sons;
    [Google Scholar]
  39. Lauber C. L., Hamady M., Knight R., Fierer N.. 2009; Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol75:5111–5120 [CrossRef][PubMed]
    [Google Scholar]
  40. Liesack W., Bak F., Kreft J. U., Stackebrandt E.. 1994; Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol162:85–90 [CrossRef][PubMed]
    [Google Scholar]
  41. Lladó S., Benada O., Cajthaml T., Baldrian P., García-Fraile P.. 2016; Silvibacterium bohemicum gen. nov. sp. nov., an Acidobacterium isolated from coniferous soil in the Bohemian forest national park. Syst Appl Microbiol39:14–19 [CrossRef][PubMed]
    [Google Scholar]
  42. Losey N. A., Stevenson B. S., Busse H. J., Sinninghe Damsté J. S., Rijpstra W. I., Rudd S., Lawson P. A.. 2013; Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. Int J Syst Evol Microbiol63:4149–4157 [CrossRef][PubMed]
    [Google Scholar]
  43. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar  , Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  44. Lunau M., Lemke A., Walther K., Martens-Habbena W., Simon M.. 2005; An improved method for counting bacteria from sediments and turbid environments by Epifluorescence microscopy. Environ Microbiol7:961–968 [CrossRef][PubMed]
    [Google Scholar]
  45. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of Deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  46. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M.. 2011; Terriglobus saanensis sp. nov., an Acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol61:1823–1828 [CrossRef][PubMed]
    [Google Scholar]
  47. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M.. 2012; Granulicella arctica sp. nov., Granulicella mallensis sp. nov.,Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel Acidobacteria from tundra soil. Int J Syst Evol Microbiol62:2097–2106 [CrossRef][PubMed]
    [Google Scholar]
  48. Naether A., Foesel B. U., Naegele V., Wüst P. K., Weinert J., Bonkowski M., Alt F., Oelmann Y., Polle A. et al. 2012; Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol78:7398–7406 [CrossRef][PubMed]
    [Google Scholar]
  49. Okamura K., Kawai A., Yamada T., Hiraishi A.. 2011; Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria . FEMS Microbiol Lett317:138–142 [CrossRef][PubMed]
    [Google Scholar]
  50. Pankratov T. A., Dedysh S. N.. 2010; Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol60:2951–2959 [CrossRef][PubMed]
    [Google Scholar]
  51. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N.. 2012; Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol62:430–437 [CrossRef][PubMed]
    [Google Scholar]
  52. Parte A. C.. 2014; LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res42:D613–D616 [CrossRef]
    [Google Scholar]
  53. Pascual J., Wüst P. K., Geppert A., Foesel B. U., Huber K. J., Overmann J.. 2015; Novel isolates double the number of chemotrophic species of subdivision 4 Acidobacteria and allow the first description of higher taxa in this understudied Acidobacterial subdivision. Syst Appl Microbiol34:534–544[CrossRef]
    [Google Scholar]
  54. Pascual J., Wüst P. K., Geppert A., Foesel B. U., Huber K. J., Overmann J.. 2015; Terriglobus albidus sp. nov., a member of the family Acidobacteriaceae isolated from Namibian semiarid savannah soil. Int J Syst Evol Microbiol65:3297–3304 [CrossRef][PubMed]
    [Google Scholar]
  55. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. 2007; SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  56. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  57. Sinninghe Damsté J. S., Rijpstra W. I., Hopmans E. C., Weijers J. W., Foesel B. U., Overmann J., Dedysh S. N.. 2011; 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol77:4147–4154 [CrossRef][PubMed]
    [Google Scholar]
  58. Sinninghe Damsté J. S., Rijpstra W. I., Hopmans E. C., Foesel B. U., Wüst P. K., Overmann J., Tank M., Bryant D. A., Dunfield P. F. et al. 2014; Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4. Appl Environ Microbiol80:5207–5218 [CrossRef][PubMed]
    [Google Scholar]
  59. Stott M. B., Crowe M. A., Mountain B. W., Smirnova A. V., Hou S., Alam M., Dunfield P. F.. 2008; Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol10:2030–2041 [CrossRef][PubMed]
    [Google Scholar]
  60. Söhngen C., Podstawka A., Bunk B., Gleim D., Vetcininova A., Reimer L. C., Ebeling C., Pendarovski C., Overmann J.. 2016; BacDive-the bacterial diversity metadatabase in 2016. Nucleic Acids Res44:D581–D585 [CrossRef][PubMed]
    [Google Scholar]
  61. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  62. Tank M., Bryant D. A.. 2015; Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol65:1426–1430 [CrossRef][PubMed]
    [Google Scholar]
  63. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  64. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington DC: American Society for Microbiology Press;
    [Google Scholar]
  65. Tschech A., Pfennig N.. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol137:163–167 [CrossRef]
    [Google Scholar]
  66. Turner S., Pryer K. M., Miao V. P. W., Palmer J. D.. 1999; Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukary Microbiol46:327–338 [CrossRef]
    [Google Scholar]
  67. Wang J., Chen M.-h., Lv Y.-y., Qiu L.-h.. 2015; Edaphobacter dinghuensis sp. nov., an acidobacterium isolated from lower subtropical forest soil. Int J Syst Evol Microbiol Doi:10.1099/ijsem.0.000710
    [Google Scholar]
  68. Wanner G., Vogl K., Overmann J.. 2008; Ultrastructural characterization of the prokaryotic symbiosis in "Chlorochromatium aggregatum" . J Bacter190:3721–3730 [CrossRef]
    [Google Scholar]
  69. Whang K. S., Lee J. C., Lee H. R., Han S. I., Chung S. H.. 2014; Terriglobus tenax sp. nov., an exopolysaccharide-producing acidobacterium isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol64:431–437 [CrossRef][PubMed]
    [Google Scholar]
  70. Wüst P. K., Geppert A., Huber K. J., Foesel B. U., Overmann J.. 2016; Brevitalea aridisoli, B. deliciosa, and Arenimicrobium luteum, three novel species of acidobacteria subdivision 4 (class Blastocatellia) isolated from Namibian savanna soil and description of the novel family Pyrinomonadaceae . Int J Syst Evol Microbiol Doi:10.1099/ijsem.0.001199
    [Google Scholar]
  71. Yamada K., Okuno Y., Meng X. Y., Tamaki H., Kamagata Y., Hanada S.. 2014; Granulicella cerasi sp. nov., an acidophilic bacterium isolated from cherry bark. Int J Syst Evol Microbiol64:2781–2785 [CrossRef][PubMed]
    [Google Scholar]
  72. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001131
Loading
/content/journal/ijsem/10.1099/ijsem.0.001131
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error