1887

Abstract

An extremely halophilic archaeon, strain PJ61, was isolated from a subterranean rock salt of Yuanyongjing Salt Mine, Yunnan, China. Colonies were pale, smooth, convex, and round (1.0–2.0 mm in diameter) on nutrient agar plates. Cells of strain PJ61 were spherical or oval , stained Gram-negative, and were non-motile. Optimal growth was observed with 3.4 M NaCl and at 38 °C in aerobic conditions. Mg was required for growth. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain PJ61 belonged to the genus and was closely related to R60 (98.3 % 16S rRNA gene sequence similarity), GX71 (98.2 %) and other species of the genus (<98 %). Sequence similarities of gene and - gene between strain PJ61 and the species of the genus also showed that strain PJ61 was closely related to strain GX71 (93.4 % for and 94.8 % for -). The DNA–DNA relatedness between strains PJ61 and R60 was 33±0.5 %, while it was 37±0.4 % for GX71. The DNA G+C content of strain PJ61 was 65.1 mol%. The major polar lipids of strain PJ61 consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain PJ61 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PJ61 (=CGMCC 1.15212 =JCM 30955).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001129
2016-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2980.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001129&mimeType=html&fmt=ahah

References

  1. Boutaiba S., Hacene H., Bidle K. A., Maupin-Furlow J. A.. 2011; Microbial diversity of the hypersaline Sidi Ameur and Himalatt Salt Lakes of the Algerian Sahara. J Arid Environ75:909–916 [CrossRef][PubMed]
    [Google Scholar]
  2. Burns D. G., Camakaris H. M., Janssen P. H., Dyall-Smith M. L.. 2004; Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol70:5258–5265 [CrossRef][PubMed]
    [Google Scholar]
  3. Corral P., de la Haba R. R., Sánchez-Porro C., Amoozegar M. A., Papke R. T., Ventosa A.. 2015; Halorubrum persicum sp. nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol65:1770–1778 [CrossRef][PubMed]
    [Google Scholar]
  4. Cui H. L., Tohty D., Zhou P. J., Liu S. J.. 2006; Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol56:1631–1634 [CrossRef][PubMed]
    [Google Scholar]
  5. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J.. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol57:2204–2206 [CrossRef][PubMed]
    [Google Scholar]
  6. Cui H. L., Zhou P. J., Oren A., Liu S. J.. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 13:31–37 [CrossRef][PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142[PubMed][CrossRef]
    [Google Scholar]
  8. Dussault H. P.. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol70:484–485[PubMed]
    [Google Scholar]
  9. Gonzalez C., Gutierrez C., Ramirez C.. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol24:710–715[PubMed][CrossRef]
    [Google Scholar]
  10. Gupta R. S., Naushad S., Baker S.. 2015; Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol65:1050–1069 [CrossRef][PubMed]
    [Google Scholar]
  11. Gutiérrez M. C., Castillo A. M., Pagaling E., Heaphy S., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E. et al. 2008; Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol58:2031–2035 [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser41:95–98
    [Google Scholar]
  13. Han D., Cui H. L.. 2015; Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria . Antonie Van Leeuwenhoek107:217–223 [CrossRef][PubMed]
    [Google Scholar]
  14. Kamekura M.. 1993; Lipids of extreme halophiles. In The Biology of Halophilic Bacteria , pp.135–161 Edited by Vreeland R. H., Hochstein L. I. . Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. Li Y., Xiang H., Liu J., Zhou M., Tan H.. 2003; Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles7:401–407 [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol4:109–118[CrossRef]
    [Google Scholar]
  18. McGenity T. J., Grant W. D.. 1995; Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol18:237–243 [CrossRef]
    [Google Scholar]
  19. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. 2010; Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol60:2398–2408 [CrossRef][PubMed]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241[CrossRef]
    [Google Scholar]
  21. Oren A., Ventosa A., Grant W. D.. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol47:233–238[CrossRef]
    [Google Scholar]
  22. Oren A.. 2002; Halophilic Microorganisms and Their Environments Boston: Kluwer Academic;[CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp.607–654 Edited by Gerhardt P.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849[CrossRef]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Tazi L., Breakwell D. P., Harker A. R., Crandall K. A.. 2014; Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles18:525–535 [CrossRef][PubMed]
    [Google Scholar]
  27. Tomlinson G. A., Hochstein L. I.. 1976; Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol22:587–5891[PubMed][CrossRef]
    [Google Scholar]
  28. Ventosa A., de la Haba R. R., Sánchez-Porro C., Papke R. T.. 2015; Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol25:80–87 [CrossRef][PubMed]
    [Google Scholar]
  29. Xiao W., Wang Z. G., Wang Y. X., Schneegurt M. A., Li Z. Y., Lai Y. H., Zhang S. Y., Wen M. L., Cui X. L.. 2013; Comparative molecular analysis of the prokaryotic diversity of two salt mine soils in southwest China. J Basic Microbiol53:942–952 [CrossRef][PubMed]
    [Google Scholar]
  30. Yim K. J., Cha I. T., Lee H. W., Song H. S., Kim K. N., Lee S. J., Nam Y. D., Hyun D. W., Bae J. W. et al. 2014; Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. Antonie Van Leeuwenhoek105:603–612 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang W. J., Cui H. L.. 2014; Halorubrum salinum sp. nov., isolated from a marine solar saltern. Arch Microbiol196:395–400 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001129
Loading
/content/journal/ijsem/10.1099/ijsem.0.001129
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error