1887

Abstract

A moderately halophilic, Gram-stain-negative, non-endospore-forming endophytic bacterium designated strain ST307 was isolated from the euhalophyte in Dongying, China. Strain ST307 was aerobic, rod-shaped, motile and orange–yellow-pigmented. The organism grew at NaCl concentrations of 0.6–20 % (w/v) (optimum 5–6 %, w/v), at temperatures of 5–45 °C (optimum 35 °C) and at pH 5–9 (optimum pH 7–8). It accumulated poly--hydroxybutyric acid and produced exopolysaccharides. The major fatty acids were C 7/C 6, C and C 7/C 6. The predominant lipoquinone was ubiquinone Q-9. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, a glycoaminolipid and a phosphoglycoaminolipid. The DNA G+C content was 60.5 mol%. Phylogenetic analyses of 16S rRNA gene sequences and concatenated , and gene sequences revealed that the strain represents a member of the genus . The closest related type strain was M1-18. Mean DNA–DNA relatedness values between strain ST307 and the related species M1-18, DSM 7218, DSM 6769, DSM 6768, CGMCC 1.2321, DSM 14323, DSM 3043 and DSM 15547 were 15±2−45±1 %. On the basis of phenotypic, chemotaxonomic and molecular features, strain ST307 clearly represents a novel species of the genus . The name sp. nov. is proposed, with ST307 (=CGMCC 1.8902=DSM 22428) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001126
2016-08-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2952.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001126&mimeType=html&fmt=ahah

References

  1. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A.. 2001a; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol51:1443–1448[CrossRef]
    [Google Scholar]
  2. Arahal D. R., Garcia M. T., Vargas C., Canovas D., Nieto J. J., Ventosa A.. 2001b; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174 . Int J Syst Evol Microbiol51:1457–1462[CrossRef]
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A.. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  4. Bauer A. W., Kirby W. M., Sherris J. C., Turck M.. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol45:493–496[PubMed]
    [Google Scholar]
  5. Cui C. X., Dai M. X., Xia Z. J.. 2010; Phylogenetic diversity of endophytic moderately halophilic bacteria isolated from Suaeda salsa L. Microbiology China37:204–210
    [Google Scholar]
  6. De la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A.. 2010; Taxonomic study of the genus Salinicola: transfer of Halomonas salaria and Chromohalobacter salarius to the genus Salinicola as Salinicola salarius comb. nov. and Salinicola halophilus nom. nov., respectively. Int J Syst Evol Microbiol60:963–971 [CrossRef][PubMed]
    [Google Scholar]
  7. De la Haba R. R., Sánchez-Porro C., Ventosa A.. 2011; Taxonomy, phylogeny, and biotechnological interest of the family Halomonadaceae . In Halophiles and Hypersaline Environments , pp.27–64 Edited by Ventosa A., Oren A., Ma Y.. Heidelberg: Springer;[CrossRef]
    [Google Scholar]
  8. De la Haba R. R., Márquez M. C., Papke R. T., Ventosa A.. 2012; Multilocus sequence analysis of the family Halomonadaceae . Int J Syst Evol Microbiol62:520–538 [CrossRef][PubMed]
    [Google Scholar]
  9. De la Haba R. R., Arahal D. R., Sánchez-Porro C., Ventosa A.. 2014; The Family Halomonadaceae. In The Prokaryotes - Gammaproteobacteria, 4th edn. pp.325–352 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Heidelberg: Springer;
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  11. DeLong E. F.. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  12. Gaby W. L., Hadley C.. 1957; Practical laboratory test for the identification of Pseudomonas aeruginosa . J Bacteriol74:356–358[PubMed]
    [Google Scholar]
  13. Hugh R., Leifson E.. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol66:24–26[PubMed]
    [Google Scholar]
  14. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  15. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A.. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol54:499–511 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  20. León M. J., Sánchez-Porro C., De la Haba R. R., Llamas I., Ventosa A.. 2014; Larsenia salina gen. nov., sp. nov., a new member of the family Halomonadaceae based on multilocus sequence analysis. Syst Appl Microbiol37:480–487 [CrossRef][PubMed]
    [Google Scholar]
  21. León M. J., Sánchez-Porro C., De la Haba R. R., Llamas I., Ventosa A.. 2015; Corrigendum to “Larsenia salina gen. nov., sp. nov., a new member of the family Halomonadaceae based on multilocus sequence analysis” [Syst. Appl. Microbiol. 37 (October (7) (2014)) 480–487]. Syst Appl Microbiol38:77 [CrossRef]
    [Google Scholar]
  22. Lind E., Ursing J.. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand Sect B94:205–213 [CrossRef]
    [Google Scholar]
  23. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  25. Oren A.. 2002; Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol28:56–63 [CrossRef][PubMed]
    [Google Scholar]
  26. Oren A., Ventosa A.. 2013; Minutes of the joint open meeting of the subcommittee on the taxonomy of Halobacteriaceae and subcommittee on the taxonomy of Halomonadaceae . Int J Syst Evol Microbiol63:3540–3544 [CrossRef][PubMed]
    [Google Scholar]
  27. Oren A., Ventosa A.. 2014; Minutes of the joint open meeting of the subcommittee on the taxonomy of Halobacteriaceae and subcommittee on the taxonomy of Halomonadaceae . Int J Syst Evol Microbiol64:3915–3918 [CrossRef][PubMed]
    [Google Scholar]
  28. Peçonek J., Gruber C., Gallego V., Ventosa A., Busse H. J., Kämpfer P., Radax C., Stan-Lotter H.. 2006; Reclassification of Pseudomonas beijerinckii Hof 1935 as Chromohalobacter beijerinckii comb. nov., and emended description of the species. Int J Syst Evol Microbiol56:1953–1957 [CrossRef][PubMed]
    [Google Scholar]
  29. Prado B., Lizama C., Aguilera M., Ramos-Cormenzana A., Fuentes S., Campos V., Monteoliva-Sánchez M.. 2006; Chromohalobacter nigrandesensis sp. nov., a moderately halophilic, Gram-negative bacterium isolated from Lake Tebenquiche on the Atacama Saltern, Chile. Int J Syst Evol Microbiol56:647–651 [CrossRef][PubMed]
    [Google Scholar]
  30. Quillaguamán J., Delgado O., Mattiasson B., Hatti-Kaul R.. 2004; Chromohalobacter sarecensis sp. nov., a psychrotolerant moderate halophile isolated from the saline Andean region of Bolivia. Int J Syst Evol Microbiol54:1921–1926 [CrossRef][PubMed]
    [Google Scholar]
  31. Rodriguez-Valera F.. 1988; Characteristics and microbial ecology of hypersaline environments. In Halophilic Bacteriavol. 1 pp3–30 Edited by Rodriguez-Valera F.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  32. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp.611–651 Edited by Gerhart P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Sánchez-Porro C., Tokunaga H., Tokunaga M., Ventosa A.. 2007; Chromohalobacter japonicus sp. nov., a moderately halophilic bacterium isolated from a Japanese salty food. Int J Syst Evol Microbiol57:2262–2266 [CrossRef][PubMed]
    [Google Scholar]
  34. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. 1982; Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol128:1959–1968 [CrossRef]
    [Google Scholar]
  35. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F.. 1989; Classification of "Chromobacterium marismortui" in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol39:382–386 [CrossRef]
    [Google Scholar]
  36. Ventosa A., Nieto J. J., Oren A.. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev62:504–544[PubMed]
    [Google Scholar]
  37. Ventosa A.. 2006; Unusual micro-organisms from unusual habitats: hyper-saline environments. In Prokaryotic Diversity: Mechanisms and Significance , pp.223–253 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F.. Cambridge: Cambridge UniversityPress;[CrossRef]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E et al. 1987; International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001126
Loading
/content/journal/ijsem/10.1099/ijsem.0.001126
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error