1887

Abstract

A Gram-stain-positive, endospore-forming, rod-shaped, facultatively anaerobic bacterium, designated as strain E3, was isolated from groundnut seeds. Based on the 16S rRNA gene sequence analysis, strain E3 belongs to the genus Paenibacillus with P aenibacillus thailandensis S3-4A (96.0 %), Paenibacillus xanthinilyticus 11N27 (95.7 %), Paenibacillus mendelii C/2 (95.7 %) and other members of the genus Paenibacillus (<95.5 %) as its closest phylogenetic neighbours. The DNA G+C content of strain E3 was 53 mol%. Strain E3 was positive for gelatin hydrolysis, ammonification, catalase, chitinase production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, HCN production, siderophore production, biofilm formation, and urea and starch hydrolysis. Strain E3 had phosphatidylethanolamine, diphosphotidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, two unidentified aminolipids and two unidentified lipids as polar lipids. Strain E3 had diploptene, deplopterol and bacteriohopaneterol as major hopanoids. anteiso-C15 : 0 was the predominant cellular fatty acid with significant proportions of iso-C16 : 0, C16 : 0, C17 : 0, anteiso-C17 : 0, C18 : 1ω9c and iso-C14 : 0. Strain E3 had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. On the basis of physiological, biochemical, chemotaxonomic and molecular analysis, strain E3 represents a novel species of the genus Paenibacillus , for which the name Paenibacillus arachidis sp. nov. is proposed. The type strain is E3 (=KCTC 33574=LMG 28417).

Keyword(s): Arachis , new species , Paenibacillus and seeds
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001124
2016-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2923.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001124&mimeType=html&fmt=ahah

References

  1. Achouak W. , Christen R. , Barakat M. , Martel M. H. , Heulin T. . ( 1999;). Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. . Int J Syst Bacteriol 49: 787–794. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ash C. , Priest F. G. , Collins M. D. . ( 1993;). Molecular identification of rRNA group 3 bacilli (ash, farrow, wallbanks and collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus . . Antonie Van Leeuwenhoek 64: 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  3. Berge O. , Guinebretière M. H. , Achouak W. , Normand P. , Heulin T. . ( 2002;). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. . Int J Syst Evol Microbiol 52: 607–616. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brick J. M. , Bostock R. M. , Silverstone S. E. . ( 1991;). Rapid in situ assay for indoleacetic Acid production by bacteria immobilized on a nitrocellulose membrane. . Appl Environ Microbiol 57: 535–538.[PubMed]
    [Google Scholar]
  5. Cappuccino J. G. , Sherman N. . ( 1998;). Microbiology–A Laboratory Manual, , 5th edn.. San Francisco, CA:: Benjamin/Cummings Science Publishing;.
    [Google Scholar]
  6. Cheong H. , Park S. Y. , Ryu C. M. , Kim J. H. , Park S. H. , Park C. S. . ( 2005;). Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. . J Microbiol Biotechnol 15: 1286–1298.
    [Google Scholar]
  7. Da Mota F. F. , Gomes E. A. , Seldin L. . ( 2008;). Auxin production and detection of the gene coding for the Auxin Efflux Carrier (AEC) protein in Paenibacillus polymyxa . . J Microbiol 46: 257–264. [CrossRef] [PubMed]
    [Google Scholar]
  8. Das S. N. , Anil K. , Neeraja C. , Sarma P. V. S. R. N. , Srinivas V. , Podile A. R. . ( 2010a;). Plant growth promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. . J. Plant Growth Reg 29: 409–418.[CrossRef]
    [Google Scholar]
  9. Das S. N. , Sarma P. V. S. R. N. , Neeraja C. , Malati N. , Podile A. R. . ( 2010b;). Members of Gammaproteobacteria and Bacilli represent the culturable diversity of chitinolytic bacteria in chitin-enriched soils. . World J Microbiol Biotechnol 26: 1875–1881. [CrossRef]
    [Google Scholar]
  10. Dasman   , Kajiyama S. , Kawasaki H. , Yagi M. , Seki T. , Fukusaki E. , Kobayashi A. . ( 2002;). Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. . Int J Syst Evol Microbiol 52: 1669–1674. [CrossRef] [PubMed]
    [Google Scholar]
  11. De Oliveira Costa L. E. , de Queiroz M. V. , Borges A. C. , de Moraes C. A. , de Araújo E. F. . ( 2012;). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). . Braz J Microbiol 43: 1562–1575. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ghazalibiglar H. , Hampton J. G. , van Zijll de Jong E. , Holyoake A. . ( 2015;). Enhanced growth of cabbage seedlings by a Paenibacillus isolate in the presence of Xanthomonas campestris pv. campestris . . N. Z. Plant Prot 68: 173–178.
    [Google Scholar]
  13. Heyndrickx M. , Vandemeulebroecke K. , Scheldeman P. , Kersters K. , de Vos P. , Logan N. A. , Aziz A. M. , Ali N. , Berkeley R. C. . ( 1996;). A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae . . Int J Syst Bacteriol 46: 988–1003. [CrossRef] [PubMed]
    [Google Scholar]
  14. Joseph B. , Patra R. R. , Lawrence R. . ( 2007;). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L. . Int J Plant Prod 1: 141–151.
    [Google Scholar]
  15. Kanzawa Y. , Harada A. , Takeuchi M. , Yokota A. , Harada T. . ( 1995;). Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. . Int J Syst Bacteriol 45: 515–521. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kates M. . ( 1972;). Techniques of Lipidology, New York, NY:: Elsevier;.[CrossRef]
    [Google Scholar]
  17. Kates M. . ( 1986;). Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam:: Elsevier;.
    [Google Scholar]
  18. Khianngam S. , Akaracharanya A. , Tanasupawat S. , Lee K. C. , Lee J. S. . ( 2009;). Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. . Int J Syst Evol Microbiol 59: 564–568. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim D. , Kim S. , Lee H. , Chun J. , Cho J. C. , Ka J. O. . ( 2015a;). Paenibacillus xanthinilyticus sp. nov., isolated from agricultural soil. . Int J Syst Evol Microbiol 65: 2937–2942. [CrossRef]
    [Google Scholar]
  20. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim T. S. , Han J. H. , Joung Y. , Kim S. B. . ( 2015b;). Paenibacillus oenotherae sp. nov. and Paenibacillus hemerocallicola sp. nov., isolated from the roots of herbaceous plants. . Int J Syst Evol Microbiol 65: 2717–2725. [CrossRef]
    [Google Scholar]
  22. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lebuhn M. , Heulin T. , Hartmann A. . ( 1997;). Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. . FEMS Microbiol Ecol 22: 325–334. [CrossRef]
    [Google Scholar]
  24. Li Z. , Chang S. , Lin L. , Li Y. , An Q. . ( 2011;). A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. . Lett Appl Microbiol 53: 178–185. [CrossRef] [PubMed]
    [Google Scholar]
  25. Liu Y. , Liu L. , Qiu F. , Schumann P. , Shi Y. , Zou Y. , Zhang X. , Song W. . ( 2010;). Paenibacillus hunanensis sp. nov., isolated from rice seeds. . Int J Syst Evol Microbiol 60: 1266–1270. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lorck H. . ( 1948;). Production of Hydrocyanic acid by bacteria. . Physiol Plant 1: 142–146. [CrossRef]
    [Google Scholar]
  27. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  28. McKerrow J. , Vagg S. , McKinney T. , Seviour E. M. , Maszenan A. M. , Brooks P. , Seviour R. J. . ( 2000;). A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. . Lett Appl Microbiol 30: 178–182. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of Deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  30. Nautiyal C. S. . ( 1999;). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. . FEMS Microbiol Lett 170: 265–270. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nielsen J. , Sorensen G. . ( 1997;). Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. . FEMS Microbiol. Ecol 22: 183–192. [CrossRef]
    [Google Scholar]
  32. O'Toole G. A. . ( 2011;). Microtiter dish biofilm formation assay. . J Vis Exp 47: 2437. [CrossRef] [PubMed]
    [Google Scholar]
  33. Oedjijono M. A. , Dragar C. . ( 1993;). Isolation of bacteria antagonistic to a range of plant pathogenic fungi. . Soil Biol Biochem 25: 247–250. [CrossRef]
    [Google Scholar]
  34. Oren A. , Duker S. , Ritter S. . ( 1996;). The polar lipid composition 280 of Walsby’s square bacterium. . FEMS Microbiol Lett 138: 135–140. [CrossRef]
    [Google Scholar]
  35. Rivas R. , García-Fraile P. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2006;). Paenibacillus cellulosilyticus sp. nov. a cellulolytic and Xylanolytic bacterium isolated from the bract phyllosphere of Phoenix Dactylifera . . Int J Syst Bacteriol 56: 2777–2781.[CrossRef]
    [Google Scholar]
  36. Saravanan V. S. , Subramoniam S. R. , Raj S. A. . ( 2004;). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. . Braz J Microbiol 35: 121–125. [CrossRef]
    [Google Scholar]
  37. Sasser M. . ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  38. Schwyn B. , Neilands J. B. . ( 1987;). Universal chemical assay for the detection and determination of siderophores. . Anal Biochem 160: 47–56. [CrossRef] [PubMed]
    [Google Scholar]
  39. Shida O. , Takagi H. , Kadowaki K. , Nakamura L. K. , Komagata K. . ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . . Int J Syst Bacteriol 47: 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  40. Smerda J. , Sedlacek I. , Pacova Z. , Durnova E. , Smıskova A. , Havel L. . ( 2005;). Paenibacillus mendelii sp. nov. from surfacesterilized seeds of Pisum Sativum l. . Int J Syst Bacteriol 55: 2351–2354.[CrossRef]
    [Google Scholar]
  41. Smerda J. , Sedlacek I. , Pacova Z. , Durnova E. , Havel L. . ( 2006;). Paenibacillus sepulcri sp. nov., isolated from biodeteriorated mural paintings in the servilia tomb. . Int J Syst Bacteriol 56: 2341–2344. [CrossRef]
    [Google Scholar]
  42. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tindall B. J. . ( 1990a;). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66: 199–202. [CrossRef]
    [Google Scholar]
  44. Tindall B. J. . ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  45. Tushar L. , Sasikala C. , Ramana C. . ( 2014;). Draft genome sequence of Rhodomicrobium udaipurense JA643T with special reference to hopanoid biosynthesis. . DNA Res 21: 639–647. [CrossRef] [PubMed]
    [Google Scholar]
  46. von der Weid I. , Duarte G. F. , Elsas J. D. V. , Seldin L. . ( 2002;). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil . . Int J Syst Evol Microbiol 52: 2147–2153. [CrossRef] [PubMed]
    [Google Scholar]
  47. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001124
Loading
/content/journal/ijsem/10.1099/ijsem.0.001124
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error