1887

Abstract

Rhizobial strains from root nodules of Astragalus mongholicus and soybean (Glycine max) were characterized phylogenetically as members of the genus Ensifer (formerly named Sinorhizobium ), based on 16S rRNA gene sequence comparisons. Results based upon concatenated sequence analysis of three housekeeping genes (recA, atpD and glnII, ≤ 93.8 % similarities to known species) and average nucleotide identity (ANI) values of whole genome sequence comparisons (ranging from 89.6 % to 83.4 % to Ensifer fredii and Ensifer saheli , respectively) indicated the distinct positions of these novel strains within the genus Ensifer . Phylogeny of symbiotic genes (nodC and nifH) of three novel strains clustered them with rhizobial species Ensifer fredii and Ensifer sojae , both isolated from nodules of Glycine max. Cross-nodulation tests showed that the representative strain CCBAU 23380 could form root nodules with nitrogen fixation capability on Glycine soja, Albizia julibrissin, Vigna unguiculata and Cajanus cajan, but failed to nodulate Astragalus mongholicus, its original host legume. Strain CCBAU 23380 formed inefficient nodules on G. max, and it did not contain 18 : 0, 18 : 1ω7c 11-methyl or summed feature 1 fatty acids, which differed from other related strains. Failure to utilize malonic acid as a carbon source distinguished strain CCBAU 23380 from the type strains of related species. The genome size of CCBAU 23380 was 6.0 Mbp, comprising 5624 predicted genes with DNA G+C content of 62.4 mol%. Based on the results above, a novel species, Ensifer glycinis sp. nov., is proposed, with CCBAU 23380 (=LMG 29231 =HAMBI 3645) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001120
2016-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2910.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001120&mimeType=html&fmt=ahah

References

  1. Blanquet P. , Silva L. , Catrice O. , Bruand C. , Carvalho H. , Meilhoc E. . ( 2015;). Sinorhizobium meliloti controls nitric oxide-mediated post-translational modification of a Medicago truncatula nodule protein. . Mol Plant Microbe Interact 28: 1353–1363. [CrossRef] [PubMed]
    [Google Scholar]
  2. Casida L. E. . ( 1982;). Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. . Int J Syst Bacteriol 32: 339–345.[CrossRef]
    [Google Scholar]
  3. Chen W. X. , Yan G. H. , Li J. L. . ( 1988;). Numerical Taxonomic Study of Fast-Growing Soybean Rhizobia and a Proposal that Rhizobium fredii Be Assigned to Sinorhizobium gen. nov. . Int J Syst Bacteriol 38: 392–397.[CrossRef]
    [Google Scholar]
  4. Delcher A. L. , Bratke K. A. , Powers E. C. , Salzberg S. L. . ( 2007;). Identifying bacterial genes and endosymbiont DNA with Glimmer. . Bioinformatics 23: 673–679. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dunfield K. E. , Xavier L. J. C. , Germida J. J. . ( 1999;). Identification of Rhizobium leguminosarum and Rhizobium sp. (Cicer) strains using a custom fatty acid methyl ester (FAME) profile library. . J Appl Microbiol 86: 78–86.[CrossRef]
    [Google Scholar]
  6. Gao J. L. , Sun J. G. , Li Y. , Wang E. T. , Chen W. X. . ( 1994;). Numerical taxonomy and DNA relatedness of tropical Rhizobia isolated from Hainan province, China. . Int J Syst Bacteriol 44: 151–158.[CrossRef]
    [Google Scholar]
  7. Goris J. , Konstantinidis K. T. , Klappenbach J. A. , Coenye T. , Vandamme P. , Tiedje J. M. . ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  8. Guo H. J. , Wang E. T. , Zhang X. X. , Li Q. Q. , Zhang Y. M. , Tian C. F. , Chen W. X. . ( 2014;). Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max . . Appl Environ Microbiol 80: 1245–1255. [CrossRef] [PubMed]
    [Google Scholar]
  9. Jiménez G. , Urdiain M. , Cifuentes A. , Lópezlópez A. , Blanch A. R. , Tamames J. , Kämpfer P. , Kolstø A. B. , Ramón D. et al. ( 2013;). Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. . Syst Appl Microbiol 36: 383–391. [CrossRef] [PubMed]
    [Google Scholar]
  10. Khalil S. , Alsanius B. W. . ( 2009;). Utilisation of carbon sources by pythium, phytophthora and fusarium species as determined by biolog® microplate assay. . Open Microbiol J 3: 9–14. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim M. , Chen Y. , Xi J. , Waters C. , Chen R. , Wang D. . ( 2015;). An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. . Proc Natl Acad Sci USA 112: 15238–15243. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lagesen K. , Hallin P. , Rødland E. A. , Staerfeldt H. H. , Rognes T. , Ussery D. . ( 2007;). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. . Nucleic Acids Res 35: 3100–3108. [CrossRef] [PubMed]
    [Google Scholar]
  13. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147: 981–993. [CrossRef] [PubMed]
    [Google Scholar]
  14. Li Q. Q. , Wang E. T. , Chang Y. L. , Zhang Y. Z. , Zhang Y. M. , Sui X. H. , Chen W. F. , Chen W. X. . ( 2011a;). Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. . Int J Syst Evol Microbiol. 61: 1981–1988.[CrossRef]
    [Google Scholar]
  15. Li Q. Q. , Wang E. T. , Zhang Y. Z. , Zhang Y. M. , Tian C. F. , Sui X. H. , Chen W. F. , Chen W. X. . ( 2011b;). Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei province, China. . Microbial Ecology 61: 917–931. [CrossRef]
    [Google Scholar]
  16. Li L. , Sinkko H. , Montonen L. , Wei G. , Lindström K. , Räsänen L. A. . ( 2012;). Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. . FEMS Microbiol Ecol 79: 46–68. [CrossRef] [PubMed]
    [Google Scholar]
  17. Li Y. Z. , Wang D. , Feng X. Y. , Jiao J. , Chen W. X. , Tian C. F. . ( 2016;). Genetics analysis reveals essential role of the PTSNtr components in the symbiosis of Sinorhizobium fredii CCBAU 45436 with soybean and pigeonpea. . Appl Environ Microbiol 82: 1305–1315.[CrossRef]
    [Google Scholar]
  18. Lloret L. , Ormeño-Orrillo E. , Rincón R. , Martínez-Romero J. , Rogel-Hernández M. A. , Martínez-Romero E. . ( 2007;). Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. . Syst Appl Microbiol 30: 280–290. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lowe T. M. , Eddy S. R. . ( 1997;). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. . Nucleic Acids Res 25: 955–964.[PubMed] [CrossRef]
    [Google Scholar]
  20. Luo R. , Liu B. , Xie Y. , Li Z. , Huang W. , Yuan J. , He G. , Chen Y. , Pan Q. et al. ( 2015;). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. . Gigascience 1: 18. [CrossRef]
    [Google Scholar]
  21. Martens M. , Dawyndt P. , Coopman R. , Gillis M. , De Vos P. , Willems A. . ( 2008;). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium) . . Int J Syst Evol Microbiol 58: 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  22. Merabet C. , Martens M. , Mahdhi M. , Zakhia F. , Sy A. , Le Roux C. , Domergue O. , Coopman R. , Bekki A. et al. ( 2010;). Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. . Int J Syst Evol Microbiol 60: 664–674. [CrossRef] [PubMed]
    [Google Scholar]
  23. Nick G. , Lindström K. . ( 1994;). Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of Rhizobium galegae strains and to Identify the DNA obtained by sonicating the liquid cultures and root nodules. . Syst Appl Microbiol 17: 265–273.[CrossRef]
    [Google Scholar]
  24. Richter M. , Rosselló-Móra R. . ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci USA 106: 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sarita S. , Sharma P. K. , Priefer U. B. , Prell J. . ( 2005;). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. . FEMS Microbiol Ecol 54: 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  26. Saw J. H. , Schatz M. , Brown M. V. , Kunkel D. D. , Foster J. S. , Shick H. , Christensen S. , Hou S. , Wan X. et al. ( 2013;). Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a lava cave in Kīlauea Caldera, Hawai'i. . PLoS One 8: e76376. [CrossRef] [PubMed]
    [Google Scholar]
  27. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Meth Gen Mol Bacteriol,vol. 5pp. 611–654. Edited by Gerhardt P. , Murray R. G. , Wood. W. A. , Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  29. Terefework Z. , Kaijalainen S. , Lindström K. . ( 2001;). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis . . J Biotechnol 91: 169–180.[PubMed] [CrossRef]
    [Google Scholar]
  30. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. . ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. . Int J Syst Evol Microbiol 50: 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  31. Versalovic J. . ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Meth Mol Cell Biol 5: 25–40.
    [Google Scholar]
  32. Vincent J. M. . ( 1970;). A Manual for the Practical Study of Root Nodule Bacteria,vol. 15 Oxford:: International Biological Programme (By) Blackwell Scientific;.
    [Google Scholar]
  33. Vinuesa P. , Silva C. , Werner D. , Martínez-Romero E. . ( 2005;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34: 29–54. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wang Y. C. , Wang F. , Hou B. C. , Wang E. T. , Chen W. F. , Sui X. H. , Chen W. X. , Li Y. , Zhang Y. B. . ( 2013;). Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. . Syst Appl Microbiol 36: 467–473. [CrossRef] [PubMed]
    [Google Scholar]
  35. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703.[PubMed]
    [Google Scholar]
  36. Yan H. , Ji Z. J. , Jiao Y. S. , Wang E. T. , Chen W. F. , Guo B. L. , Chen W. X. . ( 2016;). Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. . Syst Appl Microbiol 39: 141–149. [CrossRef] [PubMed]
    [Google Scholar]
  37. Young J. M. . ( 2010;). Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the judicial commission?. Int J Syst Evol Microbiol 60: 1711–1713. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhao C. T. , Wang E. T. , Chen W. F. , Chen W. X. . ( 2008;). Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China. . FEMS Microbiol Lett 286: 263–273. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001120
Loading
/content/journal/ijsem/10.1099/ijsem.0.001120
Loading

Data & Media loading...

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error