1887

Abstract

A novel halophilic archaeon designated strain CBA1114 was isolated from solar salt in the Republic of Korea. Strain CBA1114, cells of which were coccoid and Gram-stain-negative, grew in the presence of 15–30 % (w/v) NaCl (optimum, 20 %) and at 20–50 °C (optimum, 40 °C) and pH 7.0–9.0 (optimum, pH 8.0). Strain CBA1114 required Mg for growth. Strain CBA1114 had three 16S rRNA genes, , and ; levels of similarity between the sequences were 99.7–99.9 %. The 16S rRNA gene sequence of strain CBA1114 showed 91.7 % similarity to that of PR5. In multilocus sequence analysis (MLSA), five housekeeping genes, and , were found to be closely related to those of the members of the genera (89.7 % similarity of the gene sequence), (91.9 %, ), (85.4 %, ), (89.2 %, ) and (75.7 %, ). A phylogenetic tree generated from the results of MLSA of the five housekeeping genes showed that strain CBA1114 was closely related to species of the genus in the family . The major polar lipids were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and unidentified lipids. The G+C content of the genomic DNA of strain CBA1114 was 68.1 mol%. According to the results of phylogenetic, phenotypic and chemotaxonomic analyses, we designate strain CBA1114 (=JCM 30111=KCTC 4206) as the type strain of gen. nov., sp. nov., a novel species of a new genus within the family .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001118
2016-07-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2740.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001118&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Benson H. J.. 2002; Microbiological Applications: A Laboratory Manual in General Microbiology NY: McGraw-Hill New York;
    [Google Scholar]
  3. Brooks K., Sodeman T.. 1974; A rapid method for determining decarboxylase and dihydrolase activity. J Clin Pathol27:148–152 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. 1981; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  5. Corral P., Gutiérrez M. C., Castillo A. M., Domínguez M., Lopalco P., Corcelli A., Ventosa A.. 2013; Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol63:104–108 [CrossRef][PubMed]
    [Google Scholar]
  6. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J.. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol57:2204–2206 [CrossRef][PubMed]
    [Google Scholar]
  7. Cui H. L., Zhou P. J., Oren A., Liu S. J.. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles13:31–37 [CrossRef][PubMed]
    [Google Scholar]
  8. Dussault H. P.. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol70:484–485[PubMed]
    [Google Scholar]
  9. Ederer G. M., Chu J. H., Blazevic D. J.. 1971; Rapid test for urease and phenylalanine deaminase production. Appl Mirobiol21:545
    [Google Scholar]
  10. Euzéby J. P.. 1997; List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  13. Gonzalez C., Gutierrez C., Ramirez C.. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  14. Grant W. D.. 2001; Genus I. Halobacterium Elazari-Volcani 1957, 207AL emend. Larsen and Grant 1989, 2222. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 1 pp301–305 Edited by Boone D. R., Castenholz. R. W., Garrity G. M.. New York: Springer;
    [Google Scholar]
  15. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. 2001; Class IIIHalobacteriaclass. nov.. Bergey's Manual of Systematic Bacteriology1294–334
    [Google Scholar]
  16. Gupta R. S., Naushad S., Baker S.. 2015; Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol65:1050–1069 [CrossRef][PubMed]
    [Google Scholar]
  17. Gutiérrez M. C., Castillo A. M., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. 2007; Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol57:1402–1407 [CrossRef][PubMed]
    [Google Scholar]
  18. Itoh T., Yamaguchi T., Zhou P., Takashina T.. 2005; Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles9:111–116 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Larsen H., Grant W. D.. 1989; Genus I. Halobacterium. In Bergey's Manual of Systematic Bacteriology2219–2224
    [Google Scholar]
  21. Ma Y., Galinski E. A., Grant W. D., Oren A., Ventosa A.. 2010; Halophiles 2010: life in saline environments. Appl Environ Microbiol76:6971–6981 [CrossRef][PubMed]
    [Google Scholar]
  22. McGenity T. J., Gemmell R. T., Grant W. D.. 1998; Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol48:1187–1196 [CrossRef][PubMed]
    [Google Scholar]
  23. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R.. 2010; Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol60:2513–2516 [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  25. Montalvo-Rodríguez R., López-Garriga J., Vreeland R. H., Oren A., Ventosa A., Kamekura M.. 2000; Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol50:1065–1071 [CrossRef][PubMed]
    [Google Scholar]
  26. Oren A., Ventosa A., Grant W. D.. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol47:233–238 [CrossRef]
    [Google Scholar]
  27. Papke R. T., White E., Reddy P., Weigel G., Kamekura M., Minegishi H., Usami R., Ventosa A.. 2011; A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. Int J Syst Evol Microbiol61:2984–2995 [CrossRef][PubMed]
    [Google Scholar]
  28. Parte A. C.. 2014; LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res42:D613–616 [CrossRef][PubMed]
    [Google Scholar]
  29. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  30. Roh S. W., Nam Y. D., Chang H. W., Sung Y., Kim K. H., Oh H. M., Bae J. W.. 2007; Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol57:2296–2298 [CrossRef][PubMed]
    [Google Scholar]
  31. Roh S. W., Sung Y., Nam Y. D., Chang H. W., Kim K. H., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W.. 2008; Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol46:40–44 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  33. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S.. 2007; Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol57:19–24 [CrossRef][PubMed]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654 Edited by M. P. Gerhardt R. G. E., Wood. W. A., Kreig N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Song H. S., Cha I. T., Yim K. J., Lee H. W., Hyun D. W., Lee S. J., Rhee S. K., Kim K. N., Kim D. et al. 2014; Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek105:979–986 [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  37. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  38. Xu X. W., Liu S. J., Tohty D., Oren A., Wu M., Zhou P. J.. 2005; Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China. Int J Syst Evol Microbiol55:2539–2542 [CrossRef][PubMed]
    [Google Scholar]
  39. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Shimoshige H., Kamekura M., Itoh T., Doukyu N., Inoue A. et al. 2013; Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol63:1138–1142 [CrossRef][PubMed]
    [Google Scholar]
  40. Yang Y., Cui H. L., Zhou P. J., Liu S. J.. 2006; Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol56:2353–2355 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001118
Loading
/content/journal/ijsem/10.1099/ijsem.0.001118
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error