1887

Abstract

A novel actinobacterial strain, designated ACD12, was isolated from a Saharan soil sample collected from Adrar province, southern Algeria. A polyphasic study was carried out to establish the taxonomic position of this strain. Strain ACD12 was observed to form extensively branched substrate mycelia. Aerial mycelium was absent or was weakly produced on all media tested, while spore chains were short with a hooked and irregular spiral form (2–3 turns). The dominant diaminopimelic acid isomer in the cell wall was -diaminopimelic acid. Glucose, ribose, galactose, mannose and madurose occured in whole-cell hydrolysates. The major phospholipid was diphosphatidylglycerol and phosphatidylinositol. The predominant menaquinone was MK-9(H). The fatty acid profile was characterized by the presence of C, C, C, CC 9 and iso-C. Results of 16S rRNA gene sequence comparisons revealed that strain ACD12shared the highest degree of 16S rRNA gene sequence similarity with DSM 45233 (98.3 %) and DSM 45043(97.8 %). All tree-making algorithms used also supported strain ACD12forming a distinct clade with its most closely related species. In addition, DNA–DNA hybridization indicated only 39.8 % relatedness with DSM 45233 and 18.7 % relatedness with DSM 45043. The combined phenotypic and genotypic data show that the novel isolate represents a novel species of the genus , for which the name sp. nov., is proposed, with the type strain ACD12 (=DSM 46745 =CECT 8842).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001114
2016-07-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2724.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001114&mimeType=html&fmt=ahah

References

  1. Aouiche A., Bouras N., Mokrane S., Zitouni A., Schumann P., Spröer C., Sabaou N., Klenk H. P.. 2015; Actinokineospora mzabensis sp. nov., a novel actinomycete isolated from Saharan soil. Antonie Van Leeuwenhoek107:291–296 [CrossRef][PubMed]
    [Google Scholar]
  2. Ara I., Matsumoto A., Bakir M. A., Kudo T., Omura S., Takahashi Y.. 2008; Actinomadura bangladeshensis sp. nov. and Actinomadura chokoriensis sp. nov. Int J Syst Evol Microbiol58:1653–1659 [CrossRef][PubMed]
    [Google Scholar]
  3. Becker B., Lechevalier M. P., Gordon R. E., Lechevalier H. A.. 1964; Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol12:421–423[PubMed]
    [Google Scholar]
  4. Boubetra D., Zitouni A., Bouras N., Schumann P., Spröer C., Klenk H. P., Sabaou N.. 2015; Saccharothrix tamanrassetensis sp. nov., an actinomycete isolated from Saharan soil. Int J Syst Evol Microbiol65:1316–1320 [CrossRef][PubMed]
    [Google Scholar]
  5. Bouras N., Meklat A., Zitouni A., Mathieu F., Schumann P., Spröer C., Sabaou N., Klenk H. P.. 2015; Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete isolated from Saharan soil. Antonie Van Leeuwenhoek107:313–320 [CrossRef][PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  7. Cook A. E., Roes M., Meyers P. R.. 2005; Actinomadura napierensis sp. nov., isolated from soil in South Africa. Int J Syst Evol Microbiol55:703–706 [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  9. Euanorasetr J., Intra B., Mongkol P., Chankhamhaengdecha S., Tuchinda P., Mori M., Shiomi K., Nihira T., Panbangred W.. 2015; Spirotetronate antibiotics with anti-Clostridium activity from Actinomadura sp. 2EPS. World J Microbiol Biotechnol31:391–398 [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  12. Fitch W. M.. 1977; On the Problem of discovering the most parsimonious tree. Am Nat111:223–257 [CrossRef]
    [Google Scholar]
  13. Goodfellow M.. 1971; Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol69:33–90 [CrossRef][PubMed]
    [Google Scholar]
  14. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N.. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J of Bacteriol24:54–63 [CrossRef]
    [Google Scholar]
  15. Hayakawa M., Nonomura H.. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferm Technol65:501–509 [CrossRef]
    [Google Scholar]
  16. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp21–132 Edited by Munro H. N.. New York: Academic. Press;[CrossRef]
    [Google Scholar]
  18. Kelly K. L., Judd D. B.. 1976; Color: Universal Language and Dictionary of Names (National Bureau of Standards Special Publication 440) Washington, DC: US Department of Commerce;[CrossRef]
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a Silver loaded ion exchanger as stationary Phases. J Liq Chromatogr5:2359–2367 [CrossRef]
    [Google Scholar]
  22. Kroppenstedt R. M.. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series)vol. 20 pp173–179 Edited by Goodfellow. M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  23. Kroppenstedt R. M., Stackebrandt E., Goodfellow M.. 1990; Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora . Syst Appl Microbiol13:148–160 [CrossRef]
    [Google Scholar]
  24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  25. Lechevalier H. A., Lechevalier M. P.. 1968; A critical evaluation of the genera of aerobic actinomycetes. In The Actinomycetales pp393–405 Edited by Prauser H.. Jena: VEB Gustav Fischer Verlag;
    [Google Scholar]
  26. Lechevalier M. P., Lechevalier H.. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol20:435–443 [CrossRef]
    [Google Scholar]
  27. Lechevalier M. P., De Bievre C., Lechevalier H.. 1977; Chemotaxonomy of aerobic Actinomycetes: Phospholipid composition. Biochem Syst Ecol5:249–260 [CrossRef]
    [Google Scholar]
  28. Lee S. D., Jeong H. S.. 2006; Actinomadura hallensis sp. nov., a novel actinomycete isolated from Mt. Halla in Korea. Int J Syst Evol Microbiol56:259–264 [CrossRef][PubMed]
    [Google Scholar]
  29. Lu Z., Wang L., Zhang Y., Shi Y., Liu Z., Quintana E. T., Goodfellow M.. 2003; Actinomadura catellatispora sp. nov. and Actinomadura glauciflava sp. nov., from a sewage ditch and soil in southern China. Int J Syst Evol Microbiol53:137–142 [CrossRef][PubMed]
    [Google Scholar]
  30. Marchal N., Bourdon J. L., Richard C. L.. 1987; Les Milieux De Culture Pour L’isolement Et L’identification Biochimique Des Bactéries Paris: Doin Press;
    [Google Scholar]
  31. Meklat A., Bouras N., Mokrane S., Zitouni A., Schumann P., Spröer C., Klenk H. P., Sabaou N.. 2015; Bounagaea algeriensis gen. nov., sp. nov., an extremely halophilic actinobacterium isolated from a Saharan soil of Algeria. Antonie Van Leeuwenhoek108:473–482 [CrossRef][PubMed]
    [Google Scholar]
  32. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  33. Quintana E. T., Trujillo M. E., Goodfellow M.. 2003; Actinomadura mexicana sp. nov. and Actinomadura meyerii sp. nov., two novel soil sporoactinomycetes. Syst Appl Microbiol26:511–517 [CrossRef][PubMed]
    [Google Scholar]
  34. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  36. Saker R., Bouras N., Zitouni A., Ghoul M., Rohde M., Schumann P., Spröer C., Sabaou N., Klenk H. P.. 2014; Mzabimyces algeriensis gen. nov., sp. nov., a halophilic filamentous actinobacterium isolated from a Saharan soil, and proposal of Mzabimycetaceae fam. nov. Antonie Van Leeuwenhoek106:1021–1030 [CrossRef][PubMed]
    [Google Scholar]
  37. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark DE: MIDI Inc;
    [Google Scholar]
  38. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol and Evol28:2731–2739 [CrossRef]
    [Google Scholar]
  40. Waksman S. A.. 1961; The Actinomycetes, Classification, Identification, Descriptions of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  42. Wink J., Kroppenstedt R. M., Seibert G., Stackebrandt E.. 2003; Actinomadura namibiensis sp. nov. Int J Syst Evol Microbiol53:721–724 [CrossRef][PubMed]
    [Google Scholar]
  43. Yassin A. F., Spröer C., Siering C., Klenk H. P.. 2010; Actinomadura sputi sp. nov., isolated from the sputum of a patient with pulmonary infection. Int J Syst Evol Microbiol60:149–153 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001114
Loading
/content/journal/ijsem/10.1099/ijsem.0.001114
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error