1887

Abstract

An anaerobic, nitrate-reducing, sulfur- and thiosulfate-oxidizing bacterium, designated strain 1812E, was isolated from the vent polychaete Riftia pachyptila, which was collected from a deep-sea hydrothermal vent on the East Pacific Rise. Cells were Gram-stain-negative rods, measuring approximately 1.05±0.11 µm by 0.40±0.05 µm. Strain 1812Egrew at 25 – –45 °C (optimum 35 °C), with 1.5–4.0 % (w/v) NaCl (optimum 3.0 %) and at pH 5.0–8.0 (optimum pH 6.0). The generation time under optimal conditions was 3 h. Strain 1812Ewas an anaerobic chemolithotroph that grew with either sulfur or thiosulfate as the energy source and carbon dioxide as the sole carbon source. Nitrate was used as a sole terminal electron acceptor. The predominant fatty acids were C16 : 1 ω7c, C18 : 1 ω7c and C16 : 0. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was menaquinone MK-6 and the G+C content of the genomic DNA was 47.4 mol%. Phylogenetic analysis of the 16S rRNA gene of strain 1812E showed that the isolate belonged to the Epsilonproteobacteria , and its closest relatives were Sulfurovum lithotrophicum 42BKTand Sulfurovum aggregans Monchim 33(98.3 and 95.7 % sequence similarity, respectively). DNA–DNA relatedness between strain 1812Eand the type strain of S. lithotrophicum was 29.7 %, demonstrating that the two strains are not members of the same species. Based on the phylogenetic, molecular, chemotaxonomic and physiological evidence, strain 1812E represents a novel species within the genus Sulfurovum , for which the name Sulfurovum riftiae sp. nov. is proposed. The type strain is 1812E (=DSM 101780=JCM 30810).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001106
2016-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2697.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001106&mimeType=html&fmt=ahah

References

  1. Borin S. , Brusetti L. , Mapelli F. , D'Auria G. , Brusa T. , Marzorati M. , Rizzi A. , Yakimov M. , Marty D. et al. ( 2009;). Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. . Proc Natl Acad Sci USA 106: 9151–9156. [CrossRef] [PubMed]
    [Google Scholar]
  2. Campbell B. J. , Engel A. S. , Porter M. L. , Takai K. . ( 2006;). The versatile epsilon-proteobacteria: key players in sulphidic habitats. . Nat Rev Microbiol 4: 458–468. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81: 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57: 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  6. Galtier N. , Gouy M. , Gautier C. . ( 1996;). SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. . Comput Appl Biosci 12: 543–548. [CrossRef] [PubMed]
    [Google Scholar]
  7. Garrity G. M. , Bell J. A. , Lilburn T. . ( 2005;). Class V. Epsilonproteobacteria class. nov.. . In Bergey’s Manual® Syst Bacteriol, pp. 1145–1194. Springer;.[CrossRef]
    [Google Scholar]
  8. Giovannelli D. , Grosche A. , Starovoytov V. , Yakimov M. , Manini E. , Vetriani C. . ( 2012;). Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent. . Int J Syst Evol Microbiol 62: 3060–3066. [CrossRef] [PubMed]
    [Google Scholar]
  9. Giovannelli D. , d'Errico G. , Manini E. , Yakimov M. , Vetriani C. . ( 2013;). Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). . Front Microbiol 4: 184. [CrossRef] [PubMed]
    [Google Scholar]
  10. Guindon S. , Gascuel O. . ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52: 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  11. Huber J. A. , Mark Welch D. B. , Morrison H. G. , Huse S. M. , Neal P. R. , Butterfield D. A. , Sogin M. L. . ( 2007;). Microbial population structures in the deep marine biosphere. . Science 318: 97–100. [CrossRef] [PubMed]
    [Google Scholar]
  12. Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4: 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  13. Inagaki F. , Takai K. , Nealson K. H. , Horikoshi K. . ( 2004;). Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa trough Hydrothermal sediments. . Int J Syst Evol Microbiol 54: 1477–1482. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kleinsteuber S. , Schleinitz K. M. , Breitfeld J. , Harms H. , Richnow H. H. , Vogt C. . ( 2008;). Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. . FEMS Microbiol Ecol 66: 143–157. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lastovica A. J. , On S. L. , Zhang L. . ( 2014;). The Family Campylobacteraceae . . In the Prokaryotes, pp. 307–335. Springer;.[CrossRef]
    [Google Scholar]
  16. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of Deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  17. Mino S. , Kudo H. , Arai T. , Sawabe T. , Takai K. , Nakagawa S. . ( 2014;). Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus sulfurovum. . Int J Syst Evol Microbiol 64: 3195–3201. [CrossRef] [PubMed]
    [Google Scholar]
  18. Mitchell H. M. , Rocha G. A. , Kaakoush N. O. , O’Rourke J. L. , Queiroz D. M. . ( 2014;). The family Helicobacteraceae . . In The Prokaryotes: Deltaproteobacteria Epsilonproteobacteria , , 4th edn., pp. 337–392. Edited by Rosenberg E. , DeLong E. F. , Lory S. , Stackebrandt E. , Thompson F. . New York:: Springer;.[CrossRef]
    [Google Scholar]
  19. Nakagawa S. , Takai K. . ( 2014;). The Family Nautiliaceae: The Genera Caminibacter, Lebetimonas, and Nautilia. . In The Prokaryotes: Deltaproteobacteria Epsilonproteobacteria, , 4th edn., pp. 393–399. Edited by Rosenberg E. , DeLong E. F. , Lory S. , Stackebrandt E. , Thompson F. . New York:: Springer;.[CrossRef]
    [Google Scholar]
  20. Park S. J. , Ghai R. , Martín-Cuadrado A. B. , Rodríguez-Valera F. , Jung M. Y. , Kim J. G. , Rhee S. K. . ( 2012;). Draft genome sequence of the sulfur-oxidizing bacterium "Candidatus Sulfurovum sediminum" AR, which belongs to the Epsilonproteobacteria. . J Bacteriol 194: 4128–4129. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ruehland C. , Dubilier N. . ( 2010;). Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. . Environ Microbiol 12: 2312–2326. [CrossRef] [PubMed]
    [Google Scholar]
  22. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tindall B. J. . ( 1990a;). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66: 199–202. [CrossRef]
    [Google Scholar]
  24. Tindall B. J. . ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  25. Tokuda G. , Yamada A. , Nakano K. , Arita N. O. , Yamasaki H. . ( 2008;). Colonization of Sulfurovum sp. on the gill surfaces of Alvinocaris longirostris, a deep-sea hydrothermal vent shrimp. . Mar Ecol 29: 106–114. [CrossRef]
    [Google Scholar]
  26. Vetriani C. , Speck M. D. , Ellor S. V. , Lutz R. A. , Starovoytov V. . ( 2004;). Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. . Int J Syst Evol Microbiol 54: 175–181. [CrossRef] [PubMed]
    [Google Scholar]
  27. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. . , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol 37: 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001106
Loading
/content/journal/ijsem/10.1099/ijsem.0.001106
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error