1887

Abstract

An anaerobic, nitrate-reducing, sulfur- and thiosulfate-oxidizing bacterium, designated strain 1812E, was isolated from the vent polychaete , which was collected from a deep-sea hydrothermal vent on the East Pacific Rise. Cells were Gram-stain-negative rods, measuring approximately 1.05±0.11 µm by 0.40±0.05 µm. Strain 1812Egrew at 25 – –45 °C (optimum 35 °C), with 1.5–4.0 % (w/v) NaCl (optimum 3.0 %) and at pH 5.0–8.0 (optimum pH 6.0). The generation time under optimal conditions was 3 h. Strain 1812Ewas an anaerobic chemolithotroph that grew with either sulfur or thiosulfate as the energy source and carbon dioxide as the sole carbon source. Nitrate was used as a sole terminal electron acceptor. The predominant fatty acids were C 7, C 7 and C. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was menaquinone MK-6 and the G+C content of the genomic DNA was 47.4 mol%. Phylogenetic analysis of the 16S rRNA gene of strain 1812E showed that the isolate belonged to the , and its closest relatives were 42BKTand Monchim 33(98.3 and 95.7 % sequence similarity, respectively). DNA–DNA relatedness between strain 1812Eand the type strain of was 29.7 %, demonstrating that the two strains are not members of the same species. Based on the phylogenetic, molecular, chemotaxonomic and physiological evidence, strain 1812E represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 1812E (=DSM 101780=JCM 30810).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001106
2016-07-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2697.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001106&mimeType=html&fmt=ahah

References

  1. Borin S., Brusetti L., Mapelli F., D'Auria G., Brusa T., Marzorati M., Rizzi A., Yakimov M., Marty D. et al. 2009; Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA 106:9151–9156 [View Article][PubMed]
    [Google Scholar]
  2. Campbell B. J., Engel A. S., Porter M. L., Takai K. 2006; The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468 [View Article][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  6. Galtier N., Gouy M., Gautier C. 1996; SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548 [View Article][PubMed]
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T. 2005; Class V. Epsilonproteobacteria class. nov.. In Bergey’s Manual® Syst Bacteriol pp 1145–1194 Springer; [CrossRef]
    [Google Scholar]
  8. Giovannelli D., Grosche A., Starovoytov V., Yakimov M., Manini E., Vetriani C. 2012; Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent. Int J Syst Evol Microbiol 62:3060–3066 [View Article][PubMed]
    [Google Scholar]
  9. Giovannelli D., d'Errico G., Manini E., Yakimov M., Vetriani C. 2013; Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Front Microbiol 4:184 [View Article][PubMed]
    [Google Scholar]
  10. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  11. Huber J. A., Mark Welch D. B., Morrison H. G., Huse S. M., Neal P. R., Butterfield D. A., Sogin M. L. 2007; Microbial population structures in the deep marine biosphere. Science 318:97–100 [View Article][PubMed]
    [Google Scholar]
  12. Huss V. A., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  13. Inagaki F., Takai K., Nealson K. H., Horikoshi K. 2004; Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa trough Hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482 [View Article][PubMed]
    [Google Scholar]
  14. Kleinsteuber S., Schleinitz K. M., Breitfeld J., Harms H., Richnow H. H., Vogt C. 2008; Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66:143–157 [View Article][PubMed]
    [Google Scholar]
  15. Lastovica A. J., On S. L., Zhang L. 2014; The Family Campylobacteraceae . In the Prokaryotes pp 307–335 Springer; [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of Deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  17. Mino S., Kudo H., Arai T., Sawabe T., Takai K., Nakagawa S. 2014; Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus sulfurovum. Int J Syst Evol Microbiol 64:3195–3201 [View Article][PubMed]
    [Google Scholar]
  18. Mitchell H. M., Rocha G. A., Kaakoush N. O., O’Rourke J. L., Queiroz D. M. 2014; The family Helicobacteraceae . In The Prokaryotes: Deltaproteobacteria Epsilonproteobacteria , 4th edn. pp. 337–392 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. New York: Springer; [CrossRef]
    [Google Scholar]
  19. Nakagawa S., Takai K. 2014; The Family Nautiliaceae: The Genera Caminibacter, Lebetimonas, and Nautilia. In The Prokaryotes: Deltaproteobacteria Epsilonproteobacteria, 4th edn. pp. 393–399 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. New York: Springer; [CrossRef]
    [Google Scholar]
  20. Park S. J., Ghai R., Martín-Cuadrado A. B., Rodríguez-Valera F., Jung M. Y., Kim J. G., Rhee S. K. 2012; Draft genome sequence of the sulfur-oxidizing bacterium "Candidatus Sulfurovum sediminum" AR, which belongs to the Epsilonproteobacteria. J Bacteriol 194:4128–4129 [View Article][PubMed]
    [Google Scholar]
  21. Ruehland C., Dubilier N. 2010; Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ Microbiol 12:2312–2326 [View Article][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  24. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  25. Tokuda G., Yamada A., Nakano K., Arita N. O., Yamasaki H. 2008; Colonization of Sulfurovum sp. on the gill surfaces of Alvinocaris longirostris, a deep-sea hydrothermal vent shrimp. Mar Ecol 29:106–114 [View Article]
    [Google Scholar]
  26. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V. 2004; Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181 [View Article][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. ., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001106
Loading
/content/journal/ijsem/10.1099/ijsem.0.001106
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error