1887

Abstract

An aerobic, Gram-stain-negative, oxidase-positive and catalase-negative, non-motile, non-spore-forming, rod-shaped, orange-pigmented bacterium designated strain R384 was isolated from soil. Flexirubin-type pigments were present. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain R384 formed a lineage within the family of the phylum that was distinct from various species of the genus , including ‘’ NHI-24 (98.47 % sequence similarity), DSM 17617(96.89 %), E90 (96.63 %), E96 (96.61 %), 15-4 (95.53 %), DSM 19437 (94.81 %), GR10-1 (94.19 %) and CCBAU 05354 (93.67 %). The major isoprenoid quinone was menaquinone-7 (MK-7) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were iso-C, iso-CG, summed feature 3 (C 7/C 6) and iso-C3-OH. The DNA G+C content of strain R384was 44.7 mol %. DNA–DNA hybridization values between strain R384 and other members of the genus ranged from 26 to 55 %. On the basis of phenotypic, genotypic and phylogenetic analysis, strain R384 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R384 (=KEMB 9005-329=KACC 18454=JCM 31011).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001099
2016-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2650.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001099&mimeType=html&fmt=ahah

References

  1. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp.309–329 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C: American Society for Microbiology;
    [Google Scholar]
  2. Card G. L.. 1973; Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus . J Bacteriol114:1125–1137[PubMed]
    [Google Scholar]
  3. Dahal R. H., Kim J.. 2016; Rhabdobacter roseus gen nov., sp. nov., isolated from soil. Int J Syst Evol Microbial66:308–314[CrossRef]
    [Google Scholar]
  4. Dai J., Jiang F., Wang Y., Yu B., Qi H., Fang C., Zheng C.. 2011; Niabella tibetensis sp. nov., isolated from soil, and emended description of the genus Niabella . Int J Syst Evol Microbiol61:1201–1205 [CrossRef][PubMed]
    [Google Scholar]
  5. Doetsch R. N.. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp.21–33 Edited by Gerhardt P.. Washington, DC, USA: American Society for Microbiology;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to member filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol39:224–229
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence Limits on Phylogenies:an approach using the bootstrap. Evolution 39:783–791[CrossRef]
    [Google Scholar]
  9. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416[CrossRef]
    [Google Scholar]
  10. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J.. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  11. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. 2013; Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana . Int J Syst Evol Microbiol63:3487–3493 [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T. A.. 1999; BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  13. Kim B. Y., Weon H. Y., Yoo S. H., Hong S. B., Kwon S. W., Stackebrandt E., Go S. J.. 2007; Niabella aurantiaca gen. nov., sp. nov., isolated from a greenhouse soil in Korea. Int J Syst Evol Microbiol57:538–541 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120[PubMed][CrossRef]
    [Google Scholar]
  16. Komagata K., Suzuki K.. 1987; Lipids and cell wall analysis in bacterial systematics. Methods Microbiol19:161–203[CrossRef]
    [Google Scholar]
  17. Ludwig W., Euzéby J., Whitman W. B.. 2008; Draft Taxonomic Outlines of the for volume 4 of the second edition of Bergey’s Manual of Systematic Bacteriology . http://www.bergeys.org/outlines.html
  18. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241[CrossRef]
    [Google Scholar]
  20. Pham V. H. T., Kim J.. 2012; Cultivation of unculturable soil bacteria. Trends Biotechnol30:475–484 [CrossRef][PubMed]
    [Google Scholar]
  21. Pham V. H. T., Kim J.. 2014; Niabella thaonhiensis sp. nov., isolated from the forest soil of Kyonggi University in Korea. Curr Microbiol69:176–181 [CrossRef][PubMed]
    [Google Scholar]
  22. Reichenbach H.. 1992; The order Cytophagales . In The Prokaryotes4 pp3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;[CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  24. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC, USA: American Society for Microbiology;
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C: American Society for Microbiology Press;
    [Google Scholar]
  29. Vaughn R. H., Mitchell N. B., Levine M.. 1939; The Voges-Proskauer and methyl red reactions in the coli-aerogenes group. J Am Water Works Assoc31:993–1001
    [Google Scholar]
  30. Wang H., Zhang Y. Z., Man C. X., Chen W. F., Sui X. H., Li Y., Zhang X. X., Chen W. X.. 2009; Niabella yanshanensis sp. nov., isolated from the soybean rhizosphere. Int J Syst Evol Microbiol59:2854–2856 [CrossRef][PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  32. Weon H. Y., Kim B. Y., Joa J. H., Kwon S. W., Kim W. G., Koo B. S.. 2008; Niabella soli sp. nov., isolated from soil from Jeju Island, Korea. Int J Syst Evol Microbiol58:467–469 [CrossRef][PubMed]
    [Google Scholar]
  33. Weon H. Y., Yoo S. H., Kim B. Y., Son J. A., Kim Y. J., Kwon S. W.. 2009; Niabella ginsengisoli sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol59:1282–1285 [CrossRef][PubMed]
    [Google Scholar]
  34. Wilson K.. 1997; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology241–242 Edited by In Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. NY: John Wiley and Sons, Inc;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001099
Loading
/content/journal/ijsem/10.1099/ijsem.0.001099
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error