1887

Abstract

A novel bacterial strain, SC2, was isolated from sp., a green marine algae, which was collected from Dadeng island, Xiamen, China. Strain SC2 was Gram-stain-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2was able to degrade skimmed milk, agar, soluble starch, Tween 20 and Tween 80 but not colloidal chitin. Growth was observed at salinities of 1–6 % and temperatures of 15–37 °C, with optimal salinity and temperature of 2 % and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2 was affiliated to the genus , with highest sequence similarity to OT-1 (97.23 %), IMCC 3317 (97.23 %) and SSK3-3 (97.02 %); the type strains of other species of the genus shared 93.98–95.78 % gene sequence similarity with strain SC2. The average nucleotide identity value and estimated DNA–DNA hybridization value between strain SC2 and the above three type strains ( OT-1, IMCC 3317 and SSK3-3) were found to be 79.4–82.4 % and 24.2–27.0 %, respectively. The predominant fatty acids (>5.0 %) were C, iso-C, iso-C 3-OH, iso-C3-OH, summed feature 3 (comprising C 7/C 6), summed feature 8 (comprising C 7/C 6) and summed feature 9 (comprising iso-C 9/C10-methyl). The respiratory quinone was determined to be solely menaquinone-6 (MK-6). The polar lipid profile of strain SC2 consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is SC2 (= KCTC 42872=MCCC 1A01772=LMG 29123).

Keyword(s): Kordia ulvae and Ulva sp.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001098
2016-07-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2623.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001098&mimeType=html&fmt=ahah

References

  1. Auch A. F., Klenk H.-P., Göker M.. 2010a; Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci2:142–148 [CrossRef]
    [Google Scholar]
  2. Auch A. F., von Jan M., Klenk H.-P., Göker M.. 2010b; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef]
    [Google Scholar]
  3. Baek K., Choi A., Kang I., Lee K., Cho J. C.. 2013; Kordia antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol63:3617–3622 [CrossRef][PubMed]
    [Google Scholar]
  4. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  5. Choi A., Oh H. M., Yang S. J., Cho J. C.. 2011; Kordia periserrulae sp. nov., isolated from a marine polychaete Periserrula leucophryna, and emended description of the genus Kordia. Int J Syst Evol Microbiol61:864–869 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M.. 1985; Isoprenoid quinone analyses in bacterial classification and identification. Society for Applied Bacteriology Technical Series267–287
    [Google Scholar]
  7. Du J., Liu Y., Lai Q., Dong C., Xie Y., Shao Z.. 2015; Kordia zhangzhouensis sp. nov., isolated from surface freshwater. Int J Syst Evol Microbiol65:3379–3383 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  9. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  10. Gurevich A., Saveliev V., Vyahhi N., Tesler G.. 2013; QUAST: quality assessment tool for genome assemblies. Bioinformatics29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  11. Hameed A., Shahina M., Lin S. Y., Cho J. C., Lai W. A., Young C. C.. 2013; Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. Int J Syst Evol Microbiol63:4790–4796 [CrossRef][PubMed]
    [Google Scholar]
  12. Kates M.. 1986; Lipid extraction procedures. In Techniques of Lipidology pp100–111 Amsterdam: Elsevier;
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  15. Moore L., Moore E., Murray R., Stackebrandt E., Starr M.. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  16. Park S., Jung Y. T., Yoon J. H.. 2014; Kordia jejudonensis sp. nov., isolated from the junction between the ocean and a freshwater spring, and emended description of the genus Kordia. Int J Syst Evol Microbiol64:657–662 [CrossRef][PubMed]
    [Google Scholar]
  17. Richter M., Rossello-Mora R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA106:19126–19131 [CrossRef]
    [Google Scholar]
  18. Rzhetsky A., Nei M.. 1992; Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol35:367–375[PubMed][CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, De: MIDI;
    [Google Scholar]
  21. Smibert R., Krieg N.. 1994; Phenotypic Characterization. In Methods for General and Molecular Bacteriology P Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Sohn J. H., Lee J. H., Yi H., Chun J., Bae K. S., Ahn T. Y., Kim S. J.. 2004; Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol54:675–680 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Tanaka T., Kawasaki K., Daimon S., Kitagawa W., Yamamoto K., Tamaki H., Tanaka M., Nakatsu C. H., Kamagata Y.. 2014; A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microbiol80:7659–7666 [CrossRef][PubMed]
    [Google Scholar]
  25. Teather R. M., Wood P. J.. 1982; Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol43:777–780[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001098
Loading
/content/journal/ijsem/10.1099/ijsem.0.001098
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error