1887

Abstract

A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain SH388, was isolated from a shallow, submarine hydrothermal vent (Kuril Islands, Russia). Cells of strain SH388 were Gram-stain-negative short rods, 0.2–0.4 µm in diameter and 1.0–2.5 µm in length, and motile with flagella. The temperature range for growth was 25–58 °C (optimum 50 °C), and the pH range for growth was pH 5.0–7.0 (optimum pH 6.0–6.5). Growth of strain SH388 was observed in the presence of NaCl concentrations ranging from 0.5 to 4.0 % (w/v) (optimum 2.0–2.5 %). The strain grew chemolithoautotrophically with molecular hydrogen as electron donor, sodium sulfite as electron acceptor and bicarbonate/CO as a carbon source. It was also able to grow by disproportionation of sulfite and elemental sulfur but not thiosulfate. Sulfate, Fe(III) and nitrate were not used as electron acceptors either with H or organic electron donors. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the class and was most closely related to and (91.6 % and 90.4 % sequence similarity). On the basis of its physiological properties and results of phylogenetic analyses, strain SH388 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the species is SH388 (=DSM 100025=VKM B-2960). It is the first thermophilic disproportionator of sulfur compounds isolated from a shallow-sea environment.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001083
2016-07-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2515.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001083&mimeType=html&fmt=ahah

References

  1. Bak F., Pfennig N.. 1987; Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol147:184–189[CrossRef]
    [Google Scholar]
  2. Finster K., Liesack W., Thamdrup B.. 1998; Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol64:119–125[PubMed]
    [Google Scholar]
  3. Janssen P. H., Schuhmann A., Bak F., Liesack W.. 1996; Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol166:184–192[CrossRef]
    [Google Scholar]
  4. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  5. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218[CrossRef]
    [Google Scholar]
  6. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P.. 2003; Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol53:1327–1332 [CrossRef][PubMed]
    [Google Scholar]
  7. Simon J., Kroneck P. M.. 2013; Microbial sulfite respiration. Adv Microb Physiol62:45–117 [CrossRef][PubMed]
    [Google Scholar]
  8. Slobodkin A. I., Zavarzina D. G., Sokolova T. G., Bonch-Osmolovskaya E. A.. 1999; Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes. Microbiology (English Translation of Mikrobiologiia)68:522–542
    [Google Scholar]
  9. Slobodkin A. I., Reysenbach A. L., Slobodkina G. B., Baslerov R. V., Kostrikina N. A., Wagner I. D., Bonch-Osmolovskaya E. A.. 2012; Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol62:2565–2571 [CrossRef][PubMed]
    [Google Scholar]
  10. Slobodkin A. I., Reysenbach A. L., Slobodkina G. B., Kolganova T. V., Kostrikina N. A., Bonch-Osmolovskaya E. A.. 2013; Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol63:1967–1971 [CrossRef][PubMed]
    [Google Scholar]
  11. Slobodkin A. I., Slobodkina G. B., Panteleeva A. N., Chernyh N. A., Novikov A. A., Bonch-Osmolovskaya E. A.. 2016; Dissulfurimicrobium hydrothermale gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating deltaproteobacterium isolated from a hydrothermal pond. Int J Syst Evol Microbiol66:1022–1026[CrossRef]
    [Google Scholar]
  12. Slobodkina G. B., Kolganova T. V., Kostrikina N. A., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2012; Caloribacterium cisternae gen. nov., sp. nov., an anaerobic thermophilic bacterium from an underground gas storage reservoir. Int J Syst Evol Microbiol62:1543–1547 [CrossRef][PubMed]
    [Google Scholar]
  13. Slobodkina G. B., Baslerov R. V., Novikov A. A., Viryasov M. B., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2016; Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol66:701–706 [CrossRef][PubMed]
    [Google Scholar]
  14. Sorokin D. Y., Tourova T. P., Henstra A. M., Stams A. J., Galinski E. A., Muyzer G.. 2008; Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. - a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology154:1444–1453 [CrossRef][PubMed]
    [Google Scholar]
  15. Sorokin D. Y., Tourova T. P., Kolganova T. V., Detkova E. N., Galinski E. A., Muyzer G.. 2011; Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles15:391–401[CrossRef]
    [Google Scholar]
  16. Wolin E. A., Wolin M. J., Wolfe R. S.. 1963; Formation of methane by bacterial extracts. J Biol Chem238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001083
Loading
/content/journal/ijsem/10.1099/ijsem.0.001083
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error