1887

Abstract

Employing a modified cultivation method, we studied two bacterial strains, UC10 and UC38, found on the Kyonggi University campus, Suwon in Gyeonggi-Do province, South Korea. These strains were non-spore-forming, Gram-stain-negative, motile and rod-shaped. Growth occurred in the presence of 0–2 % (w/v) NaCl, at pH 4–9 and a temperature range of 4–35 °C. On an R2A agar plate incubated for 5 days at 28 °C, irregular, raised and pale-yellowish colonies were observed. Comparative analysis of nearly full-length 16S rRNA gene sequences indicated that these strains were closely related to Variovorax guangxiensis GXGD002, with 98.6 % similarity. Strains UC10 and UC38were 98.0 % similar to V.ariovorax soli GH9-3; 97.8 % to V.ariovorax dokdonensis DS-43; 97.3–97.7 % to V.ariovorax ginsengisoli Gsoil 3165; 97.7–98.0 % to V.ariovorax paradoxus IAM 12373; 97.4–97.6 % to V.ariovorax defluvii 2C1-b; and 97.3–97.4 % to V.ariovorax boronicumulans BAM-48. The predominant ubiquinone was Q-8. The primary polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C17 : 0 cyclo. DNA–DNA hybridization assays indicated 89.2–91.4 % genomic DNA similarity between strains UC10 and UC38. Moreover, genomic DNA similarity between these novel strains and reference strains of the genus Variovoraxwas less than the 70 %. Based on these results, strain UC38 was designated a representative of a novel species of the genus Variovorax , with the proposed name Variovorax humicola sp. nov. The type strain is UC38(=KACC 18501=NBRC 111520).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001082
2016-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2520.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001082&mimeType=html&fmt=ahah

References

  1. Belimov A. A. , Hontzeas N. , Safronova V. I. , Demchinskaya S. V. , Piluzza G. , Bullitta S. , Glick B. R. . ( 2005;). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L.Czern.). . Soil Biol Biochem 37: 241–250.[CrossRef]
    [Google Scholar]
  2. Belimov A. A. , Dodd I. C. , Hontzeas N. , Theobald J. C. , Safronova V. I. , Davies W. J. . ( 2009;). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. . New Phytol 181: 413–423. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blümel S. , Busse H. J. , Stolz A. , Kämpfer P. . ( 2001;). Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. . Int J Syst Evol Microbiol 51: 1831–1837. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bruland N. , Bathe S. , Willems A. , Steinbüchel A. . ( 2009;). Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae . . Int J Syst Evol Microbiol 59: 2702–2707. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 41: 81–95.
    [Google Scholar]
  6. Da Costa M. S. , Albuquerque L. , Nobre M. F. , Wait R. . ( 2011;). The extraction and identification of respiratory lipoquinones of Prokaryotes and their use in taxonomy. . In Methods in Microbiology, , 1st edn.,vol. 38pp. 197–206. Edited by Rainey. F. , Oren A. . Elsevier:: Academic Press;.
    [Google Scholar]
  7. Davis D. H. , Doudoroff M. , Stanier R. Y. , Mandel M. . ( 1969;). Proposal to reject the genus Hydrogenomonas: taxonomic implications. . Int J Syst Bacteriol 19: 375–390.[CrossRef]
    [Google Scholar]
  8. Ding L. , Yokota A. . ( 2004;). Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. . Int J Syst Evol Microbiol 54: 2223–2230. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229.[CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1985;). Confidence limits on Phylogenies: an approach using the bootstrap. . Evolution (N Y) 39: 783–791. [CrossRef]
    [Google Scholar]
  11. Fisher P. R. , Appleton J. , Pemberton J. M. . ( 1978;). Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus . . J Bacteriol 135: 798–804.[PubMed]
    [Google Scholar]
  12. Frank J. A. , Reich C. I. , Sharma S. , Weisbaum J. S. , Wilson B. A. , Olsen G. J. . ( 2008;). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. . Appl Environ Microbiol 74: 2461–2470. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gao J. L. , Yuan M. , Wang X. M. , Qiu T. L. , Li J. W. , Liu H. C. , Li X. A. , Chen J. , Sun J. G. . ( 2015;). Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. . Antonie Van Leeuwenhoek 107: 65–72. [CrossRef] [PubMed]
    [Google Scholar]
  14. Im W. T. , Liu Q. M. , Lee K. J. , Kim S. Y. , Lee S. T. , Yi T. H. . ( 2010;). Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60: 1565–1569. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jacin H. , Mishkin A. R. . ( 1965;). Separation of carbohydrates on borate-impregnated silica gel G plates. . J Chromatogr 18: 170–173. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jin L. , Kim K. K. , Ahn C. Y. , Oh H. M. . ( 2012;). Variovorax defluvii sp. nov., isolated from sewage. . Int J Syst Evol Microbiol 62: 1779–1783. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim B. Y. , Weon H. Y. , Yoo S. H. , Lee S. Y. , Kwon S. W. , Go S. J. , Stackebrandt E. . ( 2006;). Variovorax soli sp. nov., isolated from greenhouse soil. . Int J Syst Evol Microbiol 56: 2899–2901. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim S. J. , Kim Y. S. , Weon H. Y. , Anandham R. , Noh H. J. , Kwon S. W. . ( 2010;). Xenophilus aerolatus sp. nov., isolated from air. . Int J Syst Evol Microbiol 60: 327–330. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution, Cambridge, UK:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  21. Krieg N. R. , Padgett P. J. . ( 2011;). Phenotypic and physiological characterization methods. . In Methods in Microbiology, , 1st edn.,vol. 38 pp. 15–60. Edited by Rainey. F. , Oren A. . Elsevier:: Academic Press;.
    [Google Scholar]
  22. Li Q. F. , Sun L. N. , Kwon S. W. , Chen Q. , He J. , Li S. P. , Zhang J. . ( 2014;). Xenophilus arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from soil. . Int J Syst Evol Microbiol 64: 1926–1931. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mergaert J. , Webb A. , Anderson C. , Wouters A. , Swings J. . ( 1993;). Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. . Appl Environ Microbiol 59: 3233–3238.[PubMed]
    [Google Scholar]
  24. Mergaert J. , Ruffieux K. , Bourban C. , Storms V. , Wagemans W. , Wintermantel E. , Swings J. . ( 2000;). In vitro biodegradation of polyester-based plastic materials by selected bacterial cultures. . J Polym Environ 8: 17–27.[CrossRef]
    [Google Scholar]
  25. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167.[CrossRef]
    [Google Scholar]
  26. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241.[CrossRef]
    [Google Scholar]
  27. Miwa H. , Ahmed I. , Yoon J. , Yokota A. , Fujiwara T. . ( 2008;). Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. . Int J Syst Evol Microbiol 58: 286–289. [CrossRef] [PubMed]
    [Google Scholar]
  28. Otsu Y. , Matsuda Y. , Shimizu H. , Ueki H. , Mori H. , Fujiwara K. , Nakajima T. , Miwa A. , Nonomura T. et al. ( 2003;). Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolyticphylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. . J Appl Ent 127: 441–446.[CrossRef]
    [Google Scholar]
  29. Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8: 151–156. [CrossRef]
    [Google Scholar]
  30. Rohde M. . ( 2011;). Microscopy. . In Methods in Microbiology, , 1st edn.,vol. 38 61–100. Edited by Rainey. F. , Oren A. . Elsevier:: Academic Press;.
    [Google Scholar]
  31. Ryu S. H. , Lee D. S. , Park M. , Wang Q. , Jang H. H. , Park W. , Jeon C. O. . ( 2008;). Caenimonas koreensis gen. nov., sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 58: 1064–1068. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sasser M. . ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. . MIDI Technical Note 101, Newark, DE:: MIDI Inc;.
    [Google Scholar]
  33. Sierra G. . ( 1957;). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie Van Leeuwenhoek 23: 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sun J . , Matsumoto K . , Nduko J. M. , Ooi T. , Taguchi S. . ( 2014;). Enzymatic characterization of a depolymerase from the isolated bacterium Variovorax sp. C34 that degrades poly (enriched lactate-co-3-hydroxybutyrate). . Polym Degrad Stab 110: 44–49.[CrossRef]
    [Google Scholar]
  35. Talia P. , Sede S. M. , Campos E. , Rorig M. , Principi D. , Tosto D. , Hopp H. E. , Grasso D. , Cataldi A. . ( 2012;). Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. . Res Microbiol 163: 221–232. [CrossRef] [PubMed]
    [Google Scholar]
  36. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  37. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tschech A. , Pfennig N. . ( 1984;). Growth yield increase linked to caffeate reduction in Acetobacteriumwoodii . . Arch Microbiol 137: 163–167.[CrossRef]
    [Google Scholar]
  39. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moor L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  40. Wheater D. M. . ( 1955;). The characteristics of Lactobacillus acidophilus and Lactobacillus bulgaricus . . J Gen Microbiol 12: 123–132. [CrossRef] [PubMed]
    [Google Scholar]
  41. Widdel F. , Kohring G.-W. , Mayer F. . ( 1983;). Studies on Dissimilatory Sulfate-reducing bacteria that decompose fatty acids III. characterization of the Filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. . Arch Microbiol 134: 286–294.[CrossRef]
    [Google Scholar]
  42. Willems A. , Ley J. D. , Gillis M. , Kersters K. . ( 1991;). NOTES: Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). . Int J Syst Evol Microbiol 41: 445–450.
    [Google Scholar]
  43. Willems A. , Mergaert J. , Swings J. . ( 2005;). Genus X. Variovorax Willems, De Ley, Gillis and Kersters 1991a, 446VP . . In Bergey's Manual of Systematic Bacteriology, vol. 2 , 2nd edn., Part C, pp. 732–735. Edited by Brenner D. J. , Krieg. N. R. , Staley. J. T. . Springer;.[CrossRef]
    [Google Scholar]
  44. Yoon J. H. , Kang S. J. , Oh T. K. . ( 2006;). Variovorax dokdonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56: 811–814. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001082
Loading
/content/journal/ijsem/10.1099/ijsem.0.001082
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error