1887

Abstract

A non-motile and yellow-pigmented bacterium, designated strain WW3, was isolated from freshwater of Woopo wetland, Republic of Korea. Cells were Gram-reaction-negative, aerobic, catalase-positive and oxidase-negative. A maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that strain WW3 forms an independent lineage within the genus . Strain WW3 was related distantly to JM27 and KMM 6042(97.1% 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain WW3 and the reference strains was low (30–41 %). The major fatty acids of strain WW3 were Cω6, Cω8, C 2-OH and summed feature 8 comprising Cω6 and/or Cω7. The predominant isoprenoid quinone of the isolate was ubiquinone-10. The DNA G+C content of strain WW3 was 63 mol%. Phenotypic characteristics distinguished strain WW3 from related species of the genus . On the basis of the evidence presented in this study,strain WW3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is WW3 (=KCTC 42620=JCM 30975).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001078
2016-07-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2491.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001078&mimeType=html&fmt=ahah

References

  1. Barrow G. I, Feltham R. K. A.. Editors 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B.. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  3. CLSI 2009; Performance standards for antimicrobial susceptibility testing. 19th Informational Supplement. CLSI document M100-S19 (ISBN 1-56238-690-5) Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  4. Chun J., Goodfellow M.. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics , pp.265–309 Edited by Goodfellow. M., O’Donnell A. G.. Chichester: Johb Wiley & Sons Ltd;
    [Google Scholar]
  6. Fan Z. Y., Xiao Y. P., Hui W., Tian G. R., Lee J. S., Lee K. C., Quan Z. X.. 2011; Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1993; PHYLIP (phylogeny inference package), version 3.5c Department of Genetics, University of Washington, Seattle, USA:
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology20:406–416 [CrossRef]
    [Google Scholar]
  10. Gallego V., Sánchez-Porro C., García M. T., Ventosa A.. 2006; Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol56:2291–2295 [CrossRef][PubMed]
    [Google Scholar]
  11. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser41:95–98
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism , pp.21–132 Edited by Munro H. N.. NewYork: Academic Press;[CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Komagata K., Suzuki K.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  15. Kovacs N.. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature178:703 [CrossRef][PubMed]
    [Google Scholar]
  16. Kwon K. K., Woo J. H., Yang S. H., Kang J. H., Kang S. G., Kim S. J., Sato T., Kato C.. 2007; Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  17. Lai Q., Yuan J., Shao Z.. 2009; Altererythrobacter marinus sp.nov., isolated from deep sea water of Indian Ocean. Int J Syst Evol Microbiol59:2973–2976 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee J. S., Lee K. C., Pyun Y. R., Bae K. S.. 2003; Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol53:1277–1280 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H.. 2005; The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  20. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  22. Nedashkovskaya O. I., Cho S. H., Joung Y., Joh K., Kim M. N., Shin K. S., Oh H. W., Bae K. S., Mikhailov V. V. et al. 2013; Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  23. Park S. C., Baik K. S., Choe H. N., Lim C. H., Kim H. J., Ka J. O., Seong C. N.. 2011; Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol61:709–715 [CrossRef][PubMed]
    [Google Scholar]
  24. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  25. Rainey F. A., Silva J., Nobre M. F., Silva M. T., da Costa M. S.. 2003; Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol53:35–41 [CrossRef][PubMed]
    [Google Scholar]
  26. Ramesh Kumar N., Nair S., Langer S., Busse H. J., Kämpfer P.. 2008; Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol58:839–844 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  28. Seo S. H., Lee S. D.. 2010; Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol60:307–311 [CrossRef][PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp.607–654 Edited by Gebhardt P., Murray R. G. E., Wood. W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology , pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt. T. M., Snyder L. R.. Washington DC: American Society for Microbiology Press;
    [Google Scholar]
  33. Wayne L. G., Stackebrandt E., Kandler O., Colwell R. R., Krichevsky M. I., Truper H. G., Murray R. G. E., Moore W. E. C., Grimont P. A. D. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  34. Xue X., Zhang K., Cai F., Dai J., Wang Y., Rahman E., Peng F., Fang C.. 2012; Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  35. Yamaguchi S., Yokoe M.. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol66:3337–3343 [CrossRef][PubMed]
    [Google Scholar]
  36. Yoon J. H., Kang K. H., Yeo S. H., Oh T. K.. 2005; Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol55:1167–1170 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001078
Loading
/content/journal/ijsem/10.1099/ijsem.0.001078
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error