1887

Abstract

A Gram-stain-positive, facultatively anaerobic, short rod-shaped, oxidase-negative and non-motile novel strain, designated YIM 101505, was isolated from the faeces of a primate, , and was studied to determine its taxonomic position. The cell wall contained -diaminopimelic acid and short-chain mycolic acids. Whole cell sugars were mannose, galactose and arabinose as major components. The major fatty acids (>10 %) were C 9, C and C 8 and the major menaquinone was MK-9(H). The polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, glycolipid and six unidentified lipids. The new isolate shared most of the typical chemotaxonomic characteristics of members of the genus . The closest related species was based on 16S rRNA gene (98.1 % similarity) and partial gene (91.4 % similarity) sequences. Similarities with other species of this genus were below 97 % based on the 16S rRNA gene. The DNA–DNA hybridization value between YIM 101505 and DSM 44549 was 47.7±3.6 %. Moreover, the physiological and biochemical characteristics of YIM 101505 and DSM 44549 were different. Thus, strain YIM 101505 is considered to represent a novel member of the genus , for which the name sp. nov. is proposed. The type strain is YIM 101505 (=DSM 45971=CCTCC AB 2013226).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001076
2016-07-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2478.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001076&mimeType=html&fmt=ahah

References

  1. Bernard K.. 2012; The genus corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol50:3152–3158 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernard K. A., Funke G.. 2012; Genus I. Corynebacterium Lehmann and Neumann 1896, 350AL emend. Bernard, Wiebke, Burdz, Reimer, Ng, Singh, Schindle and Pacheo 2010, 877. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5A pp.245–289 Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig. W., Whitman W. B.. New York: Springer;
    [Google Scholar]
  3. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M.. 2000; DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  5. Collins M. D., Goodfellow M., Minnikin D. E.. 1982; A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol128:129–149 [CrossRef][PubMed]
    [Google Scholar]
  6. Cui X. L., Mao P. H., Zeng M., Li W. J., Zhang L. P., Xu L. H., Jiang C. L.. 2001; Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol51:357–363 [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229[CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  9. Felsenstein J.. 1985; Confidence Limits on Phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416[CrossRef]
    [Google Scholar]
  11. Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kämpfer P., Busse H. J.. 2012; Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol62:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
  12. Fudou R., Jojima Y., Seto A., Yamada K., Kimura E., Nakamatsu T., Hiraishi A., Yamanaka S.. 2002; Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol52:1127–1131 [CrossRef][PubMed]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322[CrossRef]
    [Google Scholar]
  14. He L., Li W., Huang Y., Wang L. M., Liu Z. H., Lanoot B. J., Vancanneyt M., Swings J.. 2005; Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol55:1939–1944 [CrossRef][PubMed]
    [Google Scholar]
  15. Khamis A., Raoult D., La Scola B.. 2004; rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol42:3925–3931 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120[PubMed][CrossRef]
    [Google Scholar]
  18. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr5:2359–2367[CrossRef]
    [Google Scholar]
  19. Lehmann K. B., Neumann R.. 1896; Atlas und Grundriss der Bakteriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik Munich: J. F. Lehmann;
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  21. Minnikin D. E., Alshamaony L., Goodfellow M.. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol88:200–204 [CrossRef][PubMed]
    [Google Scholar]
  22. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth2:233–241[CrossRef]
    [Google Scholar]
  23. Pallen M. J., Hay A. J., Puckey L. H., Efstratiou A.. 1994; Polymerase chain reaction for screening clinical isolates of corynebacteria for the production of diphtheria toxin. J Clin Pathol47:353–356[PubMed][CrossRef]
    [Google Scholar]
  24. Riegel P., de Briel D., Prévost G., Jehl F., Monteil H.. 1994; Genomic diversity among Corynebacterium jeikeium strains and comparison with biochemical characteristics and antimicrobial susceptibilities. J Clin Microbiol32:1860–1865[PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  26. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl20:16
    [Google Scholar]
  27. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: olecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  29. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. 2009; Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt. T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001076
Loading
/content/journal/ijsem/10.1099/ijsem.0.001076
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error