1887

Abstract

A Gram-stain-positive, facultatively anaerobic, short rod-shaped, oxidase-negative and non-motile novel strain, designated YIM 101505, was isolated from the faeces of a primate, Assamese macaque, and was studied to determine its taxonomic position. The cell wall contained meso-diaminopimelic acid and short-chain mycolic acids. Whole cell sugars were mannose, galactose and arabinose as major components. The major fatty acids (>10 %) were C18 : 1 ω9c, C16 : 0 and C17 : 1 ω8c and the major menaquinone was MK-9(H2). The polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, glycolipid and six unidentified lipids. The new isolate shared most of the typical chemotaxonomic characteristics of members of the genus Corynebacterium . The closest related species was Corynebacterium efficiens based on 16S rRNA gene (98.1 % similarity) and partial rpoB gene (91.4 % similarity) sequences. Similarities with other species of this genus were below 97 % based on the 16S rRNA gene. The DNA–DNA hybridization value between YIM 101505 and C. efficiens DSM 44549 was 47.7±3.6 %. Moreover, the physiological and biochemical characteristics of YIM 101505 and C. efficiens DSM 44549 were different. Thus, strain YIM 101505 is considered to represent a novel member of the genus Corynebacterium , for which the name Corynebacterium faecale sp. nov. is proposed. The type strain is YIM 101505 (=DSM 45971=CCTCC AB 2013226).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001076
2016-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2478.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001076&mimeType=html&fmt=ahah

References

  1. Bernard K. . ( 2012;). The genus corynebacterium and other medically relevant coryneform-like bacteria. . J Clin Microbiol 50: 3152–3158. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bernard K. A. , Funke G. . ( 2012;). Genus I. Corynebacterium Lehmann and Neumann 1896, 350AL emend. Bernard, Wiebke, Burdz, Reimer, Ng, Singh, Schindle and Pacheo 2010, 877. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5A pp. 245–289. Edited by Goodfellow M. , Kämpfer P. , Busse H.-J. , Trujillo M. E. , Suzuki K. , Ludwig. W. , Whitman W. B. . New York:: Springer;.
    [Google Scholar]
  3. Christensen H. , Angen O. , Mutters R. , Olsen J. E. , Bisgaard M. . ( 2000;). DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. . Int J Syst Evol Microbiol 50: 1095–1102. [CrossRef] [PubMed]
    [Google Scholar]
  4. Collins M. D. , Jones D. . ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45: 316–354.[PubMed]
    [Google Scholar]
  5. Collins M. D. , Goodfellow M. , Minnikin D. E. . ( 1982;). A survey of the structures of mycolic acids in Corynebacterium and related taxa. . J Gen Microbiol 128: 129–149. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cui X. L. , Mao P. H. , Zeng M. , Li W. J. , Zhang L. P. , Xu L. H. , Jiang C. L. . ( 2001;). Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae . . Int J Syst Evol Microbiol 51: 357–363. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229.[CrossRef]
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence Limits on Phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416.[CrossRef]
    [Google Scholar]
  11. Frischmann A. , Knoll A. , Hilbert F. , Zasada A. A. , Kämpfer P. , Busse H. J. . ( 2012;). Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. . Int J Syst Evol Microbiol 62: 2194–2200. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fudou R. , Jojima Y. , Seto A. , Yamada K. , Kimura E. , Nakamatsu T. , Hiraishi A. , Yamanaka S. . ( 2002;). Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. . Int J Syst Evol Microbiol 52: 1127–1131. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29: 319–322.[CrossRef]
    [Google Scholar]
  14. He L. , Li W. , Huang Y. , Wang L. M. , Liu Z. H. , Lanoot B. J. , Vancanneyt M. , Swings J. . ( 2005;). Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. . Int J Syst Evol Microbiol 55: 1939–1944. [CrossRef] [PubMed]
    [Google Scholar]
  15. Khamis A. , Raoult D. , La Scola B. . ( 2004;). rpoB gene sequencing for identification of Corynebacterium species. . J Clin Microbiol 42: 3925–3931. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120.[PubMed] [CrossRef]
    [Google Scholar]
  18. Kroppenstedt R. M. . ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5: 2359–2367.[CrossRef]
    [Google Scholar]
  19. Lehmann K. B. , Neumann R. . ( 1896;). Atlas und Grundriss der Bakteriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik, Munich:: J. F. Lehmann;.
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167.[CrossRef]
    [Google Scholar]
  21. Minnikin D. E. , Alshamaony L. , Goodfellow M. . ( 1975;). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. . J Gen Microbiol 88: 200–204. [CrossRef] [PubMed]
    [Google Scholar]
  22. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Meth 2: 233–241.[CrossRef]
    [Google Scholar]
  23. Pallen M. J. , Hay A. J. , Puckey L. H. , Efstratiou A. . ( 1994;). Polymerase chain reaction for screening clinical isolates of corynebacteria for the production of diphtheria toxin. . J Clin Pathol 47: 353–356.[PubMed] [CrossRef]
    [Google Scholar]
  24. Riegel P. , de Briel D. , Prévost G. , Jehl F. , Monteil H. . ( 1994;). Genomic diversity among Corynebacterium jeikeium strains and comparison with biochemical characteristics and antimicrobial susceptibilities. . J Clin Microbiol 32: 1860–1865.[PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20: 16.
    [Google Scholar]
  27. Schleifer K. H. , Kandler O. . ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36: 407–477.[PubMed]
    [Google Scholar]
  28. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: olecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tang S. K. , Wang Y. , Chen Y. , Lou K. , Cao L. L. , Xu L. H. , Li W. J. . ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . . Int J Syst Evol Microbiol 59: 2025–2032. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tindall B. J. , Sikorski J. , Smibert R. A. , Krieg N. R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt. T. M. , Snyder L. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  32. Xu P. , Li W. J. , Tang S. K. , Zhang Y. Q. , Chen G. Z. , Chen H. H. , Xu L. H. , Jiang C. L. . ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55: 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001076
Loading
/content/journal/ijsem/10.1099/ijsem.0.001076
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error