1887

Abstract

Three isolates (A19, C21 and F12) with spiral-shaped cells and one bipolar sheathed flagellum were obtained from gastric mucosa and caecal contents of three different wild boars () and subjected to a polyphasic taxonomic study. A genus-specific PCR showed that these isolates belonged to the genus . Phylogenetic analysis based on 16S rRNA, 60-kDa heat-shock protein (HSP60) and genes demonstrated they formed a novel lineage within this genus. Pairwise 16S rRNA, HSP60 and gene sequence comparisons of the three isolates revealed 99.7, 99.4 and 99.9 % similarity, respectively, among the three isolates; the 16S rRNA gene of isolate A19shared 98.5 % sequence similarity with its nearest validly named neighbouring species, (to the type strain MIT 97-5577). The taxonomic uniqueness of the wild boar isolates was confirmed by protein analysis performed by matrix-assisted laser desorption/ionization time-of-flight MS and by a distinctive biochemical profile. These data indicated that isolates A19, C21 and F12 represent a novel taxon, for which the name sp. nov. is proposed, with isolate A19 (=DSM 28990=LMG 28471) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001071
2016-08-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2876.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001071&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Baele M., Decostere A., Vandamme P., Ceelen L., Hellemans A., Mast J., Chiers K., Ducatelle R., Haesebrouck F.. 2008; Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs. Int J Syst Evol Microbiol58:1350–1358 [CrossRef][PubMed]
    [Google Scholar]
  3. Bohr U. R., Primus A., Zagoura A., Glasbrenner B., Wex T., Malfertheiner P.. 2002; A group-specific PCR assay for the detection of Helicobacteraceae in human gut. Helicobacter7:378–383 [CrossRef][PubMed]
    [Google Scholar]
  4. Bolton F. J., Wareing D. R. A., Skirrow M. B., Hutchinson D. N.. 1992; Identification and biotyping af campylobacters. In Identification Methods in Applied and Environmental Microbiology pp.151–161 Edited by Board R. G., Jones D., Skinner F. A.. Oxford: Blackwell Scientific;
    [Google Scholar]
  5. Collado L., Jara R., González S.. 2014; Description of Helicobacter valdiviensis sp. nov., an Epsilonproteobacteria isolated from wild bird faecal samples. Int J Syst Evol Microbiol64:1913–1919 [CrossRef][PubMed]
    [Google Scholar]
  6. Dewhirst F. E., Fox J. G., On S. L. W.. 2000; Recommended minimal standards for describing new species of the genus Helicobacter . Int J Syst Bacteriol50:2231–2237 [CrossRef]
    [Google Scholar]
  7. Dewhirst F. E., Seymour C., Fraser G. J., Paster B. J., Fox J. G.. 1994; Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol44:553–560 [CrossRef][PubMed]
    [Google Scholar]
  8. Gevers D., Huys G., Swings J.. 2001; Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett205:31–36 [CrossRef][PubMed]
    [Google Scholar]
  9. Goodwin C. S., Armstrong J. A., Chilvers T., Peters M., Collins M. D., Sly L., McConnell W., Harper W. E. S.. 1989; Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol39:397–405 [CrossRef]
    [Google Scholar]
  10. Hu S., Jin D., Lu S., Liu S., Zhang J., Wang Y., Bai X., Xiong Y., Huang Y. et al. 2015; Helicobacter himalayensis sp. nov. isolated from gastric mucosa of marmot himalayana in Qinghai-Tibet Plateau China. Int J Syst Evol Microbiol65:1719–1725[CrossRef]
    [Google Scholar]
  11. Jeon W. J., Dong H. J., Shin J. H., Kim I. Y., Ho H., Oh S. H., Yoon Y. M., Choi Y. K., Suh J. G. et al. 2015; Helicobacter apodemus sp. nov., a new Helicobacter species identified from the gastrointestinal tract of striped field mice in Korea. J Vet Sci16:475–481 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  14. Mikkonen T. P., Kärenlampi R. I., Hänninen M. L.. 2004; Phylogenetic analysis of gastric and enterohepatic Helicobacter species based on partial HSP60 gene sequences. Int J Syst Bacteriol54:753–758 [CrossRef]
    [Google Scholar]
  15. Miller W. G., Yee E., Jolley K. A., Chapman M. H.. 2014; Use of an improved atpA amplification and sequencing method to identify members of the Campylobacteraceae and Helicobacteraceae. Lett Appl Microbiol58:582–590 [CrossRef][PubMed]
    [Google Scholar]
  16. Moyaert H., Decostere A., Vandamme P., Debruyne L., Mast J., Baele M., Ceelen L., Ducatelle R., Haesebrouck F.. 2007; Helicobacter equorum sp. nov., a urease-negative Helicobacter species isolated from horse faeces. Int J Syst Evol Microbiol57:213–218 [CrossRef][PubMed]
    [Google Scholar]
  17. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A. et al. 2012; MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol61:539–542 [CrossRef][PubMed]
    [Google Scholar]
  18. Shen Z., Xu S., Dewhirst F. E., Paster B. J., Pena J. A., Modlin I. M., Kidd M., Fox J. G.. 2005; A novel enterohepatic Helicobacter species ‘Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter10:59–70 [CrossRef][PubMed]
    [Google Scholar]
  19. Smet A., Flahou B., D'Herde K., Vandamme P., Cleenwerck I., Ducatelle R., Pasmans F., Haesebrouck F.. 2012; Helicobacter heilmannii sp. nov., isolated from feline gastric mucosa. Int J Syst Evol Microbiol62:299–306 [CrossRef][PubMed]
    [Google Scholar]
  20. Strohalm M., Kavan D., Novák P., Volný M., Havlícek V.. 2010; mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem82:4648–4651 [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J.. 1991; Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol41:88–103 [CrossRef][PubMed]
    [Google Scholar]
  23. Wieme A., Cleenwerck I., Van Landschoot A., Vandamme P.. 2012; Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici . Int J Syst Evol Microbiol62:3105–3108 [CrossRef][PubMed]
    [Google Scholar]
  24. Zanoni R. G., Rossi M., Giacomucci D., Sanguinetti V., Manfreda G.. 2007; Occurrence and antibiotic susceptibility of Helicobacter pullorum from broiler chickens and commercial laying hens in Italy. Int J Food Microbiol116:168–173 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001071
Loading
/content/journal/ijsem/10.1099/ijsem.0.001071
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error