1887

Abstract

‘turtle’ ants are known to harbor a core group of gut symbionts, including members belonging to the . Here, we describe the cultivation and characterization of strain CV58, a novel member of the order isolated from the guts of the ant . Strain CV58 was rod-shaped, Gram-stain-negative, non-motile and formed pale-yellow colonies on trypticase soy agar. Optimum growth occurred under an atmosphere of 4–20 % (v/v) O. Growth was possible for strain CV58at NaCl concentrations of 0–1.5 % (w/v), temperatures of 23–40 °C, and pH values of 5.5–8.5. The G+C content of the genomic DNA was 54.9 mol% and the major fatty acids were C ω7, C, Cω7/Cω6, C and C3OH. The only respiratory quinone detected was ubiquinone–9 (Q–9) and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on phylogenetic analysis of the 16S rRNA gene sequence, strain CV58 shared an 88.3 % nucleotide identity with its closest cultivated neighbor, R43. We believe that this, combined with the housekeeping gene phylogeny, differences in phenotypic characteristics and cellular fatty acid compositions of other cultivated members indicates that strain CV58 represents a novel species occupying a novel genus and family within the order . Thus, we propose the name fam nov., followed by gen. nov., sp. nov., to classify strain CV58 (=NCIMB 15011 =DSM 100910).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001068
2016-08-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2869.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001068&mimeType=html&fmt=ahah

References

  1. Anderson K. E., Russell J. A., Moreau C. S., Kautz S., Sullam K. E., Hu Y., Basinger U., Mott B. M., Buck N., Wheeler D. E. 2012; Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol 21:2282–2296 [View Article][PubMed]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [View Article][PubMed]
    [Google Scholar]
  3. Bolger A. M., Lohse M., Usadel B. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  4. Breznak J. A., Costilow R. N. 2007; Physicochemical factors in growth. In Methods Gen Mol Microbiol, 3 Edn. pp. 309–329 Edited by Marzluf G. A. , Reddy C. A. , Beveridge T. J. , Schmidt T. M. , Snyder L. R. , Breznak J. A. Washington: American Society of Microbiology;
    [Google Scholar]
  5. Brune A., Ohkuma M. 2011; Role of the termite gut microbiota in symbiotic digestion. In Biol Termit Mod Synth pp. 439–475 Edited by Bignell D. E. , Roisin Y. , Lo N. Netherlands: Springer;
    [Google Scholar]
  6. Campos V. L., Valenzuela C., Yarza P., Kämpfer P., Vidal R., Zaror C., Mondaca M. A., Lopez-Lopez A., Rosselló-Móra R. 2010; Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst Appl Microbiol 33:193–197 [View Article][PubMed]
    [Google Scholar]
  7. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V. et al. 2008; Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469 [View Article][PubMed]
    [Google Scholar]
  8. Dillon R. J., Dillon V. M. 2004; The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92 [View Article][PubMed]
    [Google Scholar]
  9. Edgar R. C. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  10. Engel P., Martinson V. G., Moran N. A. 2012; Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A 109:11002–11007 [View Article][PubMed]
    [Google Scholar]
  11. Engel P., Moran N. A. 2013; Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4:60–65 [View Article][PubMed]
    [Google Scholar]
  12. Fang X., Fang Z., Zhao J., Zou Y., Li T., Wang J., Guo Y., Chang D., Su L. et al. 2012; Draft genome sequence of Pseudomonas aeruginosa strain ATCC 27853. J Bacteriol 194:3755 [View Article][PubMed]
    [Google Scholar]
  13. Guindon S., Lethiec F., Duroux P., Gascuel O. 2005; PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559 [View Article][PubMed]
    [Google Scholar]
  14. Hu Y., Łukasik P., Moreau C. S., Russell J. A. 2014; Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol Ecol 23:1284–1300 [View Article][PubMed]
    [Google Scholar]
  15. Kautz S., Rubin B. E., Russell J. A., Moreau C. S. 2013; Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl Environ Microbiol 79:525–534 [View Article][PubMed]
    [Google Scholar]
  16. Kim P. S., Shin N. R., Kim J. Y., Yun J. H., Hyun D. W., Bae J. W. 2014; Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera. J Microbiol 52:639–645 [View Article][PubMed]
    [Google Scholar]
  17. Kwong W. K., Moran N. A. 2013; Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales' of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018 [View Article][PubMed]
    [Google Scholar]
  18. Matson E., Ottesen E., Leadbetter J. 2007; Extracting DNA from the gut microbes of the termite (Zootermopsis nevadensis). J Vis Exp 4:e195
    [Google Scholar]
  19. Price S. L., Powell S., Kronauer D. J., Tran L. A., Pierce N. E., Wayne R. K. 2014; Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J Evol Biol 27:242–258 [View Article][PubMed]
    [Google Scholar]
  20. Pruesse E., Peplies J., Glöckner F. O. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  21. Russell J. A., Moreau C. S., Goldman-Huertas B., Fujiwara M., Lohman D. J., Pierce N. E. 2009; Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci 106:21236–21241 [View Article][PubMed]
    [Google Scholar]
  22. Sanders J. G., Powell S., Kronauer D. J., Vasconcelos H. L., Frederickson M. E., Pierce N. E. 2014; Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol 23:1268–1283 [View Article][PubMed]
    [Google Scholar]
  23. Skerman V. B. D., McGowan V., Sneath P. H. A. 1989 Approved Lists of Bacterial Names (Amended) Washington (DC): ASM Press;
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods Gen Mol Microbiol Third Ed , pp. 330–393 . Edited by Marzluf G. A. , Reddy C. A. , Beveridge T. J. , Schmidt T. M. , Snyder L. R. , Breznak J. A. Washington: American Society of Microbiology;
    [Google Scholar]
  26. Wertz J. T., Breznak J. A. 2007a; Stenoxybacter acetivorans gen nov., sp. nov., an acetate-oxidizing Obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl Environ Microbiol 73:6819–6828 [View Article]
    [Google Scholar]
  27. Wertz J. T., Breznak J. A. 2007b; Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts. Appl Environ Microbiol 73:6829–6841 [View Article][PubMed]
    [Google Scholar]
  28. Wertz J. T., Kim E., Breznak J. A., Schmidt T. M., Rodrigues J. L. M. 2012; Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixationgenes. Appl Environ Microbiol 78:1544–1555 [View Article][PubMed]
    [Google Scholar]
  29. Zerbino D. R., Birney E. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001068
Loading
/content/journal/ijsem/10.1099/ijsem.0.001068
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error