1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile and aerobic bacterial strain, designated CHL1, was isolated from a sludge sample collected from a sewage treatment tank of an agricultural chemical factory. The strain grew at salinities of 0.5–5 % (w/v) NaCl (optimum 2.5 %). Growth occurred at pH 6.0–8.0 (optimum pH 7.0) and 5–40 °C (optimum 28–30 °C). The genomic DNA G+C content was determined to be 70.4 mol%. Q-10 was detected as the respiratory quinone. The major fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c and C16 : 0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids and two unidentified aminophospholipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CHL1 formed a distinct clade with Albibacter methylovorans DSM 22840 and Methylopila helvetica DM9 within the family Methylocystaceae . On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, the strain merits recognition as a representative of a novel species of a new genus within the family Methylocystaceae , for which the name Chenggangzhangella methanolivorans gen. nov., sp. nov. is proposed. The type strain of the type species is CHL1 (=KCTC 42661=CCTCC AB 2015175). In addition, the species Methylopila helvetica Doronina et al. (2000) is proposed to be transferred to the genus Albibacter as Albibacterhelveticus comb. nov. (type strain DM9=CIP 106788=VKM B-2189) on the basis of the phylogenetic analysis. An emended description of the genus Albibacter is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001062
2016-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2825.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001062&mimeType=html&fmt=ahah

References

  1. Bowman J. P. , Sly L. I. , Nichols P. D. , Hayward A. C. . ( 1993;). Revised taxonomy of the methanotrophs: Description of methylobacter gen. Nov., Emendation of methylococcus, validation of methylosinus and methylocystis species, and a proposal that the family methylococcaceae includes only the group i methanotrophs. . Int J Syst Bacteriol 43: 735–753. [CrossRef]
    [Google Scholar]
  2. Cerny G. . ( 1978;). Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. . European J Appl Microbiol Biotechnol 5: 113–122.[CrossRef]
    [Google Scholar]
  3. Christensen H. , Angen O. , Mutters R. , Olsen J. E. , Bisgaard M. . ( 2000;). DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. . Int J Syst Evol Microbiol 50: 1095–1102. [CrossRef] [PubMed]
    [Google Scholar]
  4. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  5. Doronina N. V. , Trotsenko Y. A. , Krausova V. I. , Boulygina E. S. , Tourova T. P. . ( 1998;). Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. . Int J Syst Bacteriol 48: 1313–1321. [CrossRef] [PubMed]
    [Google Scholar]
  6. Doronina N. V. , Trotsenko Y. A. , Tourova T. P. , Kuznetsov B. B. , Leisinger T. . ( 2000;). Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.–novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. . Syst Appl Microbiol 23: 210–218. [CrossRef] [PubMed]
    [Google Scholar]
  7. Doronina N. V. , Trotsenko Y. A. , Tourova T. P. , Kuznetsov B. B. , Leisinger T. . ( 2001;). Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. . Int J Syst Evol Microbiol 51: 1051–1058. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol 39: 224–229. [CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39: 783–791.[CrossRef]
    [Google Scholar]
  11. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20: 406–416.[CrossRef]
    [Google Scholar]
  12. Gonzalez C. , Gutierrez C. , Ramirez C. , Gutierrez C. , Ramirez C. . ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24: 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ivanova E. , Doronina N. , Trotsenko Y. . ( 2007;). Hansschlegelia plantiphila gen. nov. sp. nov., a new aerobic restricted facultative methylotrophic bacterium associated with plants. . Syst Appl Microbiol 30: 444–452.[CrossRef]
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim Y.-H. , Engesser K.-H. , Cerniglia C. E. . ( 2003;). Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. . Arch Biochem Biophy 416: 209–217. [CrossRef]
    [Google Scholar]
  16. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120.[PubMed] [CrossRef]
    [Google Scholar]
  17. Kroppenstedt R. M. . ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5: 2359–2367.[CrossRef]
    [Google Scholar]
  18. Li W. J. , Xu P. , Schumann P. , Zhang Y. Q. , Pukall R. , Xu L. H. , Stackebrandt E. , Jiang C. L. , Xu J. . ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . . Int J Syst Evol Microbiol 57: 1424–1428. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47: 87–95. [CrossRef]
    [Google Scholar]
  21. Parte A. C. . ( 2015;). Data from: List of prokaryotic names with standing in nomenclature. . Available at: http://www.bacterio.net/-classifgenerafamilies.html#Methylocystaceae
  22. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.
    [Google Scholar]
  23. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  24. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  25. Webb H. K. , Ng H. K. , Ivanova H. K. . ( 2014; ). The family Methylocystaceae. In The Prokaryotes , , 4th edn., pp. 341–347 . Edited by Rosenberg E. , DeLong E. F. , Lory S. , Stackebrandt E. , Thompson F. . Berlin Heidelberg:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  26. Wen Y. , Huang X. , Zhou Y. , Hong Q. , Li S. . ( 2011;). Hansschlegelia zhihuaiae sp. nov., isolated from a polluted farmland soil. . Int J Syst Evol Microbiol 61: 1114–1117. [CrossRef] [PubMed]
    [Google Scholar]
  27. Xu P. , Li W. J. , Tang S. K. , Zhang Y. Q. , Chen G. Z. , Chen H. H. , Xu L. H. , Jiang C. L. . ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55: 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
  28. Yang L. , Li X. , Li X. , Su Z. , Zhang C. , Zhang H. . ( 2014;). Bioremediation of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process. . J Hazard Mater 274: 314–321. [CrossRef] [PubMed]
    [Google Scholar]
  29. Zou X. L. , Li X. A. , Wang X. M. , Chen Q. , Gao M. , Qiu T. L. , Sun J. G. , Gao J. L. . ( 2013;). Hansschlegelia beijingensis sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic bacterium isolated from watermelon rhizosphere soil. . Int J Syst Evol Microbiol 63: 3715–3719. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001062
Loading
/content/journal/ijsem/10.1099/ijsem.0.001062
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error