1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile and aerobic bacterial strain, designated CHL1, was isolated from a sludge sample collected from a sewage treatment tank of an agricultural chemical factory. The strain grew at salinities of 0.5–5 % (w/v) NaCl (optimum 2.5 %). Growth occurred at pH 6.0–8.0 (optimum pH 7.0) and 5–40 °C (optimum 28–30 °C). The genomic DNA G+C content was determined to be 70.4 mol%. Q-10 was detected as the respiratory quinone. The major fatty acids (>10 %) were Cω7 and/or Cω6 and C. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids and two unidentified aminophospholipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CHL1 formed a distinct clade with DSM 22840 and DM9 within the family . On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, the strain merits recognition as a representative of a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is CHL1 (=KCTC 42661=CCTCC AB 2015175). In addition, the species is proposed to be transferred to the genus as comb. nov. (type strain DM9=CIP 106788=VKM B-2189) on the basis of the phylogenetic analysis. An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001062
2016-08-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2825.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001062&mimeType=html&fmt=ahah

References

  1. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: Description of methylobacter gen. Nov., Emendation of methylococcus, validation of methylosinus and methylocystis species, and a proposal that the family methylococcaceae includes only the group i methanotrophs. Int J Syst Bacteriol 43:735–753 [View Article]
    [Google Scholar]
  2. Cerny G. 1978; Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. European J Appl Microbiol Biotechnol 5:113–122 [CrossRef]
    [Google Scholar]
  3. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  5. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P. 1998; Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48:1313–1321 [View Article][PubMed]
    [Google Scholar]
  6. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.–novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218 [View Article][PubMed]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2001; Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int J Syst Evol Microbiol 51:1051–1058 [View Article][PubMed]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229 [View Article]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416 [CrossRef]
    [Google Scholar]
  12. Gonzalez C., Gutierrez C., Ramirez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  13. Ivanova E., Doronina N., Trotsenko Y. 2007; Hansschlegelia plantiphila gen. nov. sp. nov., a new aerobic restricted facultative methylotrophic bacterium associated with plants. Syst Appl Microbiol 30:444–452 [CrossRef]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  15. Kim Y.-H., Engesser K.-H., Cerniglia C. E. 2003; Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Arch Biochem Biophy 416:209–217 [View Article]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  17. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [CrossRef]
    [Google Scholar]
  18. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L., Xu J. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  20. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  21. Parte A. C. 2015; Data from: List of prokaryotic names with standing in nomenclature. Available at: http://www.bacterio.net/-classifgenerafamilies.html#Methylocystaceae
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  25. Webb H. K., Ng H. K., Ivanova H. K. 2014 The family Methylocystaceae. In The Prokaryotes , 4th edn. pp. 341–347 . Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin Heidelberg: Springer-Verlag; [CrossRef]
    [Google Scholar]
  26. Wen Y., Huang X., Zhou Y., Hong Q., Li S. 2011; Hansschlegelia zhihuaiae sp. nov., isolated from a polluted farmland soil. Int J Syst Evol Microbiol 61:1114–1117 [View Article][PubMed]
    [Google Scholar]
  27. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  28. Yang L., Li X., Li X., Su Z., Zhang C., Zhang H. 2014; Bioremediation of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process. J Hazard Mater 274:314–321 [View Article][PubMed]
    [Google Scholar]
  29. Zou X. L., Li X. A., Wang X. M., Chen Q., Gao M., Qiu T. L., Sun J. G., Gao J. L. 2013; Hansschlegelia beijingensis sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic bacterium isolated from watermelon rhizosphere soil. Int J Syst Evol Microbiol 63:3715–3719 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001062
Loading
/content/journal/ijsem/10.1099/ijsem.0.001062
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error