1887

Abstract

Three Gram-stain negative, aerobic, non-motile, rod-shaped bacterial strains, Y1R2-4, Y3R2-3 and DC2N1-10, isolated from two crater lakes of the Daxinganling Mountains, northern China, were studied to determine their taxonomic position. They grew at 4–30 °C (optimally at 20–25 °C), at pH 6.0–7.5 (optimally at pH 7.0) and in the presence of 0–0.5 % (w/v) NaCl. On the basis of 16S rRNA gene sequence analysis, these strains showed 95.3–96.6 % similarity to members of the genus Pseudorhodobacter , including Pseudorhodobacter ferrugineus DSM 5888, Pseudorhodobacter wandonensis WT-MW11, Pseudorhodobacter antarcticus ZS3-33 and Pseudorhodobacter aquimaris HDW-19. All strains contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The main polar lipids for strains Y1R2-4 and Y3R2-3 were phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified aminolipid, three unidentified phospholipids and two unidentified lipids, and those for strain DC2N1-10 were phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified aminolipid, one unidentified phospholipid and several unidentified lipids. The DNA G+C contents of strains Y1R2-4, Y3R2-3 and DC2N1-10 were 61.9, 61.0 and 60.0 mol%, respectively. In addition, strain Y1R2-4 shared less than 50 % DNA–DNA relatedness to strain DC2N1-10. Based on these differences in genetic, physiological and chemotaxonomic properties, strains Y1R2-4, Y3R2-3 and DC2N1-10 were considered to represent two novel species of the genus Pseudorhodobacter , for which the names Pseudorhodobacter sinensis sp. nov. (type strain Y1R2-4=CGMCC1.14435=KCTC 52039) and Pseudorhodobacter aquaticus sp. nov. (type strain DC2N1-10=CGMCC1.14433=KCTC 52040) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001061
2016-08-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2819.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001061&mimeType=html&fmt=ahah

References

  1. Bernardet J. F. , Nakagawa Y. , Holmes B. . ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52: 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Breznak J. , Costilow R. N. . ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Microbiology, pp. 309–329. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Chen C. X. , Zhang X. Y. , Liu C. , Yu Y. , Liu A. , Li G. W. , Li H. , Chen X. L. , Chen B. et al. ( 2013;). Pseudorhodobacter antarcticus sp. nov., isolated from Antarctic intertidal sandy sediment, and emended description of the genus Pseudorhodobacter Uchino et al. 2002 emend. Jung et al. 2012. . Int J Syst Evol Microbiol 63: 849–854. [CrossRef] [PubMed]
    [Google Scholar]
  4. Collins M. D. . ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . London:: Academic Press;.
    [Google Scholar]
  5. Collins C. H. , Lyne P. M. , Grange J. M. . ( 1989;). Collins and Lyne’s Microbiological Methods. London, Boston:: Butterworths;.
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fitch W. M. . ( 1971;). Toward defining the course of evolution: Minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  9. Hall T. A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  10. Jung Y. T. , Oh K. H. , Oh T. K. , Yoon J. H. . ( 2012;). Pseudorhodobacter aquimaris sp. nov Isolated From Seawater, and Emended Description of the Genus Pseudorhodobacter Uchino et al. 2002. . Int J Syst Evol Microbiol 62: 100–105. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lane D. J. , Goodfellow M. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. . Chichester:: Wiley;.
    [Google Scholar]
  14. Lee M. H. , Lee S. Y. , Jung Y. T. , Park S. , Yoon J. H. . ( 2013;). Pseudorhodobacter wandonensis sp. nov., isolated from wood falls, and emended description of the genus Pseudorhodobacter . . Int J Syst Evol Microbiol 63: 1479–1484. [CrossRef] [PubMed]
    [Google Scholar]
  15. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the g+c content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  17. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  18. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newyork, DE:: MIDI Inc;.
  19. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44: 846–849. [CrossRef]
    [Google Scholar]
  21. Trüper H. G. , Pfennig N. . ( 1981;). Isolation of members of the families Chromatiaceae and Chlorobiaceae . . In The Prokaryotes, pp. 279–289. Edited by Starr M. P. , Stolp H. , Trüper H. G. , Balows A. , Schlegel H. G. . Berlin:: Springer;.[CrossRef]
    [Google Scholar]
  22. Uchino Y. , Hamada T. , Yokota A. . ( 2002;). Proposal of Pseudorhodobacter ferrugineus gen nov, comb nov, for a non-photosynthetic marine bacterium, Agrobacterium ferrugineum, related to the genus Rhodobacter . . J Gen Appl Microbiol 48: 309–319. [CrossRef] [PubMed]
    [Google Scholar]
  23. Wu C. , Lu X. , Qin M. , Wang Y. , Ruan J. . ( 1989;). Analysis of menaquinone compound in microbial cells by HPLC. . Microbiology [English translation of Microbiology (Beijing)] 16: 176–178.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001061
Loading
/content/journal/ijsem/10.1099/ijsem.0.001061
Loading

Data & Media loading...

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error