1887

Abstract

Strains of members of the genus derived from ophthalmologic patients in Japan, Belgium and Switzerland and found to be closely related to-, but distinguishable from by 16S rRNA gene sequencing, were characterized using biochemical, chemotaxonomic, MALDI-TOF mass spectrometry and antimicrobial susceptibility methods and DNA–DNA hybridization as well as by whole-genome sequencing (WGS). Based on this investigation, we describe sp. nov. and sp. nov., derived from human ocular specimens, as well as emend the description of . Type strains for these species are: R-50085 (=LMG 28276 =CCUG 65815) and R-50187(=LMG 28277 =CCUG 65816). DNA G+C content was found to be 62.2 % (by HPLC) and 62.8 % (by WGS) for R-50085, 64.1 % (HPLC) and 64.8 % (WGS) for R-50187 and 67.8 % (HPLC) for LMG 19040 [=S-8 =CCUG 38654 =CECT 4843 =CIP 105509 =DSM 44356 =IFO (NBRC)16160 =JCM 12269].

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001059
2016-08-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2803.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001059&mimeType=html&fmt=ahah

References

  1. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernard K. A., Bellefeuille M., Ewan E. P.. 1991; Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic Gram-positive rods. J Clin Microbiol29:83–89[PubMed]
    [Google Scholar]
  3. Bernard K. A., Shuttleworth L., Munro C., Forbes-Faulkner J. C., Pitt D., Norton J. H., Thomas A. D.. 2002a; Propionibacterium australiense sp. nov., derived from granulomatous bovine lesions. Anaerobe8:41–47 [CrossRef]
    [Google Scholar]
  4. Bernard K. A., Munro C., Wiebe D., Ongsansoy E.. 2002b; Characteristics of rare or recently-described Corynebacterium species recovered from human clinical material in Canada. J Clin Microbiol40:4375–4381 [CrossRef]
    [Google Scholar]
  5. Bernard K. A., Funke G.. 2012; Genus Corynebacterium. In Bergeys Manual of Systematic Bacteriology: The Actinobacteria, vol. 5 , pp.245–289 Edited by Whitman W. B., Goodfellow M., Kämpfer P.. New York: Springer;
  6. Boetzer M., Henkel C. V., Jansen H. J., Butler D., Pirovano W.. 2011; Scaffolding pre-assembled contigs using SSPACE. Bioinformatics27:578–579 [CrossRef][PubMed]
    [Google Scholar]
  7. Bruker. 2011; MALDI Biotyper 3.0 User Manual Revision 2 (February 2011) Bremens, Germany: Bruker Daltronic GmbH;
    [Google Scholar]
  8. Bruker Daltronics 2014; Bruker Custom MSP and Library Creation. Edited by: Anonymous Bruker
  9. Clinical Laboratory Standards Institute 2010; M45-2A. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline Number 18, 2nd edn.vol. 30 Wayne, PA: Clinical Laboratory Standards Institute;
    [Google Scholar]
  10. Collins M. D., Burton R. A., Jones D.. 1988; Corynebacterium amycolatum sp. nov. a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol Lett49:349–352 [CrossRef]
    [Google Scholar]
  11. Collins M. D., Falsen E., Akervall E., Sjöden B., Alvarez A.. 1998; Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol48:1449–1454 [CrossRef][PubMed]
    [Google Scholar]
  12. Collins M. D., Hoyles L., Foster G., Falsen E.. 2004; Corynebacteriumcaspium sp. nov., from a caspian seal (Phoca caspica). Int J System Evol Microbiol54:925–928 [CrossRef]
    [Google Scholar]
  13. Eguchi H., Kuwahara T., Miyamoto T., Nakayama-Imaohji H., Ichimura M., Hayashi T., Shiota H.. 2008; High-level fluoroquinolone resistance in ophthalmic clinical isolates belonging to the species Corynebacterium macginleyi. J Clin Microbiol46:527–532 [CrossRef][PubMed]
    [Google Scholar]
  14. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  15. Fernandez-Garayzabal J. F., Vela A. I., Egido R., Hutson R. A., Lanzarot M. P., Fernandez-Garcia M., Collins M. D.. 2004; Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). Int J of Evol Microbiol54:2191–2195 [CrossRef]
    [Google Scholar]
  16. Fernandez-Garayzabal J. F., Collins M. D., Hutson R. A., Fernandez E., Monasterio R., Marco J., Dominguez L.. 1997; Corynebacterium mastitidis sp. nov., isolated from milk of sheep with subclinical mastitis. Int J Syst Bacteriol47:1082–1085 [CrossRef][PubMed]
    [Google Scholar]
  17. Goris J., Suzuki K., Vos P. D., Nakase T., Kersters K, Suzuki K.. 1998; Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol44:1148–1153 [CrossRef]
    [Google Scholar]
  18. Hall V., Collins M. D., Hutson R. A., Lawson P. A., Falsen E., Duerden B.. 2003; Corynebacterium atypicum sp. nov., from a human clinical source, does not contain corynomycolic acids. Int J System Evol Microbiol53:1065–1068 [CrossRef]
    [Google Scholar]
  19. Khamis A., Raoult D., La Scola B.. 2004; rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol42:3925–3931 [CrossRef][PubMed]
    [Google Scholar]
  20. Magoč T., Salzberg S. L.. 2011; FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27:2957–2963 [CrossRef][PubMed]
    [Google Scholar]
  21. Mesbah M., Whitman W. B.. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  22. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  24. Tippelt A., Albersmeier A., Brinkrolf K., Rückert C., Fernández-Natal I., Soriano F., Tauch A., Mollmann S., Jaenicke S.. 2014; Mycolic acid biosynthesis genes in the genome sequence of Corynebacterium atypicum DSM 44849. Genome Announc2: [CrossRef][PubMed]
    [Google Scholar]
  25. Wiertz R., Schulz S. C., Müller U., Kämpfer P., Lipski A.. 2013; Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol63:4495–4501 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001059
Loading
/content/journal/ijsem/10.1099/ijsem.0.001059
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error