1887

Abstract

Strains of members of the genus derived from ophthalmologic patients in Japan, Belgium and Switzerland and found to be closely related to-, but distinguishable from by 16S rRNA gene sequencing, were characterized using biochemical, chemotaxonomic, MALDI-TOF mass spectrometry and antimicrobial susceptibility methods and DNA–DNA hybridization as well as by whole-genome sequencing (WGS). Based on this investigation, we describe sp. nov. and sp. nov., derived from human ocular specimens, as well as emend the description of . Type strains for these species are: R-50085 (=LMG 28276 =CCUG 65815) and R-50187(=LMG 28277 =CCUG 65816). DNA G+C content was found to be 62.2 % (by HPLC) and 62.8 % (by WGS) for R-50085, 64.1 % (HPLC) and 64.8 % (WGS) for R-50187 and 67.8 % (HPLC) for LMG 19040 [=S-8 =CCUG 38654 =CECT 4843 =CIP 105509 =DSM 44356 =IFO (NBRC)16160 =JCM 12269].

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001059
2016-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2803.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001059&mimeType=html&fmt=ahah

References

  1. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477 [View Article][PubMed]
    [Google Scholar]
  2. Bernard K. A., Bellefeuille M., Ewan E. P. 1991; Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic Gram-positive rods. J Clin Microbiol 29:83–89[PubMed]
    [Google Scholar]
  3. Bernard K. A., Shuttleworth L., Munro C., Forbes-Faulkner J. C., Pitt D., Norton J. H., Thomas A. D. 2002a; Propionibacterium australiense sp. nov., derived from granulomatous bovine lesions. Anaerobe 8:41–47 [View Article]
    [Google Scholar]
  4. Bernard K. A., Munro C., Wiebe D., Ongsansoy E. 2002b; Characteristics of rare or recently-described Corynebacterium species recovered from human clinical material in Canada. J Clin Microbiol 40:4375–4381 [View Article]
    [Google Scholar]
  5. Bernard K. A., Funke G. 2012; Genus Corynebacterium. In Bergeys Manual of Systematic Bacteriology: The Actinobacteria, vol. 5 , pp. 245–289 Edited by Whitman W. B., Goodfellow M., Kämpfer P. New York: Springer;
    [Google Scholar]
  6. Boetzer M., Henkel C. V., Jansen H. J., Butler D., Pirovano W. 2011; Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579 [View Article][PubMed]
    [Google Scholar]
  7. Bruker. 2011 MALDI Biotyper 3.0 User Manual Revision 2 (February 2011) Bremens, Germany: Bruker Daltronic GmbH;
    [Google Scholar]
  8. Bruker Daltronics 2014; Bruker Custom MSP and Library Creation. Edited by: Anonymous Bruker
  9. Clinical Laboratory Standards Institute 2010 M45-2A. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline Number 18, 2nd edn. vol. 30 Wayne, PA: Clinical Laboratory Standards Institute;
    [Google Scholar]
  10. Collins M. D., Burton R. A., Jones D. 1988; Corynebacterium amycolatum sp. nov. a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol Lett 49:349–352 [View Article]
    [Google Scholar]
  11. Collins M. D., Falsen E., Akervall E., Sjöden B., Alvarez A. 1998; Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids. Int J Syst Bacteriol 48:1449–1454 [View Article][PubMed]
    [Google Scholar]
  12. Collins M. D., Hoyles L., Foster G., Falsen E. 2004; Corynebacteriumcaspium sp. nov., from a caspian seal (Phoca caspica). Int J System Evol Microbiol 54:925–928 [View Article]
    [Google Scholar]
  13. Eguchi H., Kuwahara T., Miyamoto T., Nakayama-Imaohji H., Ichimura M., Hayashi T., Shiota H. 2008; High-level fluoroquinolone resistance in ophthalmic clinical isolates belonging to the species Corynebacterium macginleyi. J Clin Microbiol 46:527–532 [View Article][PubMed]
    [Google Scholar]
  14. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  15. Fernandez-Garayzabal J. F., Vela A. I., Egido R., Hutson R. A., Lanzarot M. P., Fernandez-Garcia M., Collins M. D. 2004; Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). Int J of Evol Microbiol 54:2191–2195 [View Article]
    [Google Scholar]
  16. Fernandez-Garayzabal J. F., Collins M. D., Hutson R. A., Fernandez E., Monasterio R., Marco J., Dominguez L. 1997; Corynebacterium mastitidis sp. nov., isolated from milk of sheep with subclinical mastitis. Int J Syst Bacteriol 47:1082–1085 [View Article][PubMed]
    [Google Scholar]
  17. Goris J., Suzuki K., Vos P. D., Nakase T., Kersters K, Suzuki K. 1998; Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [View Article]
    [Google Scholar]
  18. Hall V., Collins M. D., Hutson R. A., Lawson P. A., Falsen E., Duerden B. 2003; Corynebacterium atypicum sp. nov., from a human clinical source, does not contain corynomycolic acids. Int J System Evol Microbiol 53:1065–1068 [View Article]
    [Google Scholar]
  19. Khamis A., Raoult D., La Scola B. 2004; rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 42:3925–3931 [View Article][PubMed]
    [Google Scholar]
  20. Magoč T., Salzberg S. L. 2011; FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963 [View Article][PubMed]
    [Google Scholar]
  21. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479:297–306 [View Article][PubMed]
    [Google Scholar]
  22. Richter M., Rosselló-Móra R. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  24. Tippelt A., Albersmeier A., Brinkrolf K., Rückert C., Fernández-Natal I., Soriano F., Tauch A., Mollmann S., Jaenicke S. 2014; Mycolic acid biosynthesis genes in the genome sequence of Corynebacterium atypicum DSM 44849. Genome Announc 2: [View Article][PubMed]
    [Google Scholar]
  25. Wiertz R., Schulz S. C., Müller U., Kämpfer P., Lipski A. 2013; Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 63:4495–4501 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001059
Loading
/content/journal/ijsem/10.1099/ijsem.0.001059
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error