1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterium, designed strain 201-F6, was isolated from a microbial consortium that degrades poly(ethylene terephthalate) (PET) collected in Sakai city, Japan, and was characterized on the basis of a polyphasic taxonomic study. The cells were motile with a polar flagellum. The strain contained cytochrome oxidase and catalase. It grew within the pH range 5.5–9.0 (optimally at pH 7–7.5) and at 15–42 ºC (optimally at 30–37 ºC). The major isoprenoid quinone was ubiquinone with eight isoprene units (Q-8). C, C cyclo, Cω7 and C 2-OH were the predominant cellular fatty acids. The major polar lipids were phosphatidylethanolamine, -phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of genomic DNA was 70.4 mol%. Phylogenetic analysis using the 16S rRNA gene sequences showed that strain 201-F6 was affiliated to the genus , and was closely related to LMG 28178T (97.7 %) and JCM 15503 (96.6 %). Strain 201-F6could be clearly distinguished from the related species of the genus by its physiological and biochemical characteristics as well as by its phylogenetic position and DNA–DNA relatedness. Therefore, the strain represents a novel species of the genus , for which the name sp. nov. (type strain 201-F6=NBRC 110686=TISTR 2288) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001058
2016-08-01
2020-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2813.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001058&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A.. 1993; Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  2. Bürgmann H., Widmer F., Von Sigler W., Zeyer J.. 2004; New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol70:240–247 [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst14:313–333 [CrossRef]
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  7. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–203[CrossRef]
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. CanJ Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  9. Lechner U., Brodkorb D., Geyer R., Hause G., Härtig C., Auling G., Fayolle-Guichard F., Piveteau P., Müller R. H., Rohwerder T.. 2007; Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol57:1295–1303 [CrossRef][PubMed]
    [Google Scholar]
  10. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol2:233–241 [CrossRef]
    [Google Scholar]
  11. Noar J. D., Buckley D. H.. 2009; Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella . Int J Syst Evol Microbiol59:1941–1946 [CrossRef][PubMed]
    [Google Scholar]
  12. Saito H., Miura K.-I.. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta72:619–629 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  14. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note101 Newark, DE: MIDI Inc;
    [Google Scholar]
  15. Sorokin D. Y.. 2005; Is there a limit for high-pH life?. Int J Syst Evol Microbiol55:1405–1406 [CrossRef][PubMed]
    [Google Scholar]
  16. Steward G. F., Jenkins B. D., Ward B. B., Zehr J. P.. 2004; Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol70:1455–1465 [CrossRef][PubMed]
    [Google Scholar]
  17. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  19. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y.. 2004; Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria . J Gen Appl Microbiol50:159–167 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E.. 1987; International committee on Systematic Bacteriology. Report of the adhoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  22. Welander A, Welander T., Moore E., Ternström A., Molin G., Stenström A.. 1994; Ideonella dechloratans, gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol17:58–64[CrossRef]
    [Google Scholar]
  23. Willems A., Gillis M., De Ley J.. 1991; Transfer of Rhodocyclus gelatinosus to gen. nov., comb. nov., and Phylogenetic Relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus . Int J Syst Bacteriol41:65–73 [CrossRef]
    [Google Scholar]
  24. Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., Toyohara K., Miyamoto K., Kimura Y., Oda K.. 2016; A bacterium that degrades and assimilates poly(ethylene terephthalate). Science351:1196–1199 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001058
Loading
/content/journal/ijsem/10.1099/ijsem.0.001058
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error