1887

Abstract

A pleomorphic, Gram-negative, rod-shaped, indole-, oxidase- and catalase- negative, non-spore-forming, non-motile bacterium was originally isolated in 1992 from moribund, seawater farmed Atlantic salmon with multifocal tissue necrosis. Strain AVG 2115 displayed considerable similarities with , one of the two etiological agents of rat bite fever, and has been stored as sp. NCIMB 703044. On the basis of 16S rRNA gene sequence analyses, this strain displayed >99 % sequence similarities with uncultured bacterial clones from the digestive tracts of marine mammals, followed by CCUG 41628 (92.7 %), ‘’ Sn35 (92.5 %), CCUG 39713 (92.2 %), OGS16 (91.3 %), AHL 370-1 (91.2 %), DSM 12112 (91.0 %), 131000547 (90.9 %) and DSM 26322 (89.7 %). Sequence similarities to all other taxa were below 89 %. Phylogenetic analysis for strain NCIMB 703044 revealed highly similar results for and nucleotide and deduced amino acid sequence analyses independent of the employed treeing method. Average nucleotide identities (ANI) for complete genomes ranged from 66.00 % to 72.08 % between strain NCIMB 703044 and the type strains of and . Chemotaxonomic and physiological data of strain NCIMB 703044 were in congruence with closely related members of the family , represented by highly similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis was capable to clearly discriminate strain NCIMB 703044 from all currently described taxa of the family . On the basis of these data we propose the novel taxon gen. nov. sp. nov. with the type strain AVG 2115 (=NCIMB 703044) (=DSM 101867). The G+C content is 25.4 %, genome size is 1.77 Mbp.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001050
2016-06-10
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2429.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001050&mimeType=html&fmt=ahah

References

  1. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST Server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  2. Bik E. M., Chow E., Carlin K. P., Jensen E. D., Venn-Watson S., Relman D. A.. 2008; Indigenous microbiota of the bottlenose dolphin. In2nd ASM Conference on Beneficial Microbes: Beneficial Host-Microbial InteractionsSan Diego, California
    [Google Scholar]
  3. Bik E. M., Rohlik C. M., Chow E., Carlin K. P., Jensen E. D., Venn-Watson S., Relman D. A.. 2010; Indigenous microbiota of marine mammals. In13th International Symposium on Microbial Ecology Seattle: Washington:
    [Google Scholar]
  4. Bik E. M., Costello E. K., Switzer A. D., Callahan B. J., Holmes S. P., Wells R. S., Carlin K. P., Jensen E. D., Venn-Watson S. et al. 2016; Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun7:10516 [CrossRef][PubMed]
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  6. Eisenberg T., Glaeser S., Nicklas W., Mauder N., Contzen M., Aledelbi K., Kämpfer P.. 2015a; Streptobacillus felis sp. nov. isolated from a cat with pneumonia. Int J Syst Evol Microbiol65:2172–2178[CrossRef]
    [Google Scholar]
  7. Eisenberg T., Nicklas W., Mauder N., Rau J., Contzen M., Semmler T., Hofmann N., Aledelbi K., Ewers C.. 2015b; Phenotypic and genotypic characteristics of members of the Genus Streptobacillus . PLoS One10:e0134312 [CrossRef]
    [Google Scholar]
  8. Eisenberg T., Glaeser S. P., Ewers C., Semmler T., Drescher B., Kämpfer P.. 2016a; Caviibacter abscessus gen. nov. sp. nov., a novel member from the Leptotrichiaceae isolated from guinea pigs (Cavia porcellus). Int J Syst Evol Microbiol In Press
    [Google Scholar]
  9. Eisenberg T., Glaeser S. P., Ewers C., Ewers C., Semmler T., Nicklas W., Rau J., Mauder N., Hofmann N. et al. 2016b; Streptobacillus notomytis sp. nov. isolated from a spinifex hopping mouse (Notomys alexis) THOMAS, 1922 and emended description of Streptobacillus Levaditi et al. 1925, Eisenberg et al. 2015 emend. Int J Syst Evol Microbiol In Press
    [Google Scholar]
  10. Eisenberg T., Imaoka K., Kimura M., Glaeser S. P., Ewers C., Semmler T., Rau J., Nicklas W., Kämpfer P.. 2016c; Streptobacillus ratti sp. nov. isolated from a black rat (Rattus rattus). Int J Syst Evol Microbiol In Press
    [Google Scholar]
  11. Eribe E. R., Paster B. J., Caugant D. A., Dewhirst F. E., Stromberg V. K., Lacy G. H., Olsen I.. 2004; Genetic diversity of Leptotrichia and description of Leptotrichia goodfellowii sp. nov., Leptotrichia hofstadii sp. nov., Leptotrichia shahii sp. nov. and Leptotrichia wadei sp. nov. Int J Syst Evol Microbiol54:583–592 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evol39:783–791[CrossRef]
    [Google Scholar]
  13. Felsenstein J.. 2005; PHYLIP (Phylogeny Inference Package), version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington;
  14. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Glaeser S. P., Kämpfer P.. 2015; Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol38:237–245 [CrossRef][PubMed]
    [Google Scholar]
  16. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  17. Gupta R. S., Sethi M.. 2014; Phylogeny and molecular signatures for the phylum Fusobacteria and its distinct subclades. Anaerobe28:182–198 [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson J. L.. 1984; Bacterial Classification III. Nucleic acids in bacterial classification. In Bergey's Manual of Systematic Bacteriology pp.8–11 . Edited by Krieg N. R., Holt J. G.. Baltimore, London: The Williams & Wilkins Co;
    [Google Scholar]
  19. Jones D. T., Taylor W. R., Thornton J. M.. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8:275–282 [CrossRef][PubMed]
    [Google Scholar]
  20. Jukes T. H., Cantor C. R.. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism pp.21–132 Edited by Munro H. N.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  21. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005[CrossRef]
    [Google Scholar]
  22. Kimura M., Tanikawa T., Suzuki M., Koizumi N., Kamiyama T., Imaoka K., Yamada A.. 2008; Detection of Streptobacillus spp. in feral rats by specific polymerase chain reaction. Microbiol Immunol52:9–15 [CrossRef][PubMed]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  24. Maher M., Palmer R., Gannon F., Smith T. J.. 1995; Relationship of a novel bacterial fish pathogen to Streptobacillus moniliformis and the Fusobacteria group, based on 16S ribosomal RNA analysis. Sys App Microbiol18:79–84[CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Nei M., Kumar S.. 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  27. Palmer R., Drinan E., Murphy T.. 1994; A previously unknown disease of farmed Atlantic salmon: pathology and establishment of bacterial aetiology. Dis Aquat Org19:7–14[CrossRef]
    [Google Scholar]
  28. Pins M. R., Holden J. M., Yang J. M., Madoff S., Ferraro M. J.. 1996; Isolation of presumptive Streptobacillus moniliformis from abscesses associated with the female genital tract. Clin Infect Dis22:471–476[PubMed][CrossRef]
    [Google Scholar]
  29. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  30. Qin Q. L., Xie B. B., Zhang X. Y., Chen X. L., Zhou B. C., Zhou J., Oren A., Zhang Y. Z.. 2014; A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  31. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  32. Rohde J., Rapsch C., Fehr M.. 2008; Case report: Abscessation due to Streptobacillus moniliformis in a rat [in German]. Prakt Tierarzt89:466–473
    [Google Scholar]
  33. Rowbotham T. J.. 1983; Rapid identification of Streptobacillus moniliformis . Lancet2:567 [CrossRef][PubMed]
    [Google Scholar]
  34. Rygg M., Bruun C. F.. 1992; Rat bite fever (Streptobacillus moniliformis) with septicemia in a child. Scand J Infect Dis24:535–540[PubMed][CrossRef]
    [Google Scholar]
  35. Smith S. H., Murray R. G., Hall M.. 1994; The surface structure of Leptotrichia buccalis . Can J Microbiol40:90–98[PubMed][CrossRef]
    [Google Scholar]
  36. Stamatakis A.. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  37. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526[PubMed]
    [Google Scholar]
  38. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  40. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001050
Loading
/content/journal/ijsem/10.1099/ijsem.0.001050
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error