1887

Abstract

A novel actinobacterium, designated TRM 43006, was isolated from the rhizosphere soil of Populus euphratica in Xinjiang Province, north-west China. Phylogenetic and phenotypic analysis demonstrated that strain TRM 43006 belongs to the genus Streptomyces . The strain was aerobic and Gram-stain-positive; the aerial mycelium branched monopodially, forming chains of arthrospores. The spores were oval to cylindrical with smooth surfaces. The whole-cell sugar pattern of strain TRM 43006 consisted of xylose, mannitol, galactose and ribose. The menaquinones were MK-9(H6), MK-9(H8) and MK-9(H10). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides and four unknown phospholipids. Major fatty acids were iso-C16 : 0, iso-C16 : 1, iso-C14 : 0 and anteiso-C15 : 0. The G+C content of the genomic DNA was 69.0 mol%. Comparative 16S rRNA gene sequence analysis indicated that strain TRM 43006was phylogenetically most closely related to Streptomyces roseolilacinus NBRC 12815(98.6 % similarity) and Streptomyces sudanensis SD 504 (98.3 %); however, DNA–DNA hybridization studies between S. roseolilacinus NBRC 12815, S. sudanensis SD 504 and TRM 43006 showed only 30.28 and 30.65  % relatedness, respectively. Based on the evidence from this polyphasic study, strain TRM 43006 represents a novel species of the genus Streptomyces , for which the name Streptomyces indoligenes sp. nov. is proposed. The type strain is TRM 43006 (=KCTC 39611=CCTCC AA 2015010).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001049
2016-06-10
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2424.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001049&mimeType=html&fmt=ahah

References

  1. Atlas R. M. . ( 1993;). Handbook of Microbiological Media. Edited by Parks L. C. . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  2. Darriba D. , Taboada G. L. , Doallo R. , Posada D. . ( 2011;). ProtTest 3: fast selection of best-fit models of protein evolution. . Bioinformatics 27: 1164–1165. [CrossRef] [PubMed]
    [Google Scholar]
  3. Euzeby J. P. . ( 2014;). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47: 590–592.[CrossRef]
    [Google Scholar]
  4. Ezaki T H. Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radio-isotopes are used to determine genetic relatedness among bacterial. . Strains 39: 224–229.
    [Google Scholar]
  5. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  6. Felsenstein J. . ( 1992;). Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. . Genet Res 60: 209–220.[PubMed] [CrossRef]
    [Google Scholar]
  7. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H.-N. . ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24: 54–63.[CrossRef]
    [Google Scholar]
  8. Gouy M. , Guindon S. , Gascuel O. . ( 2010;). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27: 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  9. Groth I. , Schumann P. , Rainey F. A. , Martin K. , Schuetze B. , Augsten K. . ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47: 1129–1133. [CrossRef] [PubMed]
    [Google Scholar]
  10. Han L. , Zhang G. , Miao G. , Zhang X. , Feng J. . ( 2015;). Streptomyces kanasensis sp. nov., an Antiviral Glycoprotein Producing Actinomycete Isolated from Forest Soil Around Kanas Lake of China. . Curr Microbiol 71: 627–631. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29: 319–322.[CrossRef]
    [Google Scholar]
  12. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim S. B. , Brown R. , Oldfield C. , Gilbert S. C. , Iliarionov S. , Goodfellow M. . ( 2000;). Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. . Int J Syst Evol Microbiol 50: 2031–2036. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120.[PubMed] [CrossRef]
    [Google Scholar]
  15. Lazzarini A. , Cavaletti L. , Toppo G. , Marinelli F. . ( 2000;). Rare genera of actinomycetes as potential producers of new antibiotics. . Antonie Van Leeuwenhoek 78: 399–405.[PubMed] [CrossRef]
    [Google Scholar]
  16. Lechevalier M. P. L. . ( 1970;). Chemical composition as a criterion in the classification of aerobic acfinomycetes. . Int J Syst Bacteriol 20: 435–443.[CrossRef]
    [Google Scholar]
  17. Manfio G. P. , Zakrzewska-Czerwinska J. , Atalan E. , Goodfellow M. . ( 1995;). Towards minimal standards for the description of Streptomyces species. . Biotechnologiia 8: 228–237.
    [Google Scholar]
  18. McCarthy A. J. , Williams S. T. . ( 1992;). Actinomycetes as agents of biodegradation in the environment-a review. . Gene 115: 189–192. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography. . Int J Syst Evol Microbiol 39: 159–167.
    [Google Scholar]
  20. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:.[PubMed]
    [Google Scholar]
  21. Mount D. W. . ( 2008;). Maximum parsimony method for phylogenetic prediction. . CSH Protoc 32:.
    [Google Scholar]
  22. Peter Kämpfer R. M. K. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42: 989–1005.[CrossRef]
    [Google Scholar]
  23. Pridham T. G. , Gottlieb D. . ( 1948;). The Utilization of Carbon Compounds by Some Actinomycetales as an Aid for Species Determination. . J Bacteriol 56: 107–114.[PubMed]
    [Google Scholar]
  24. Quintana E. T. , Wierzbicka K. , Mackiewicz P. , Osman A. , Fahal A. H. , Hamid M. E. , Zakrzewska-Czerwinska J. , Maldonado L. A. , Goodfellow M. . ( 2008;). Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. . Antonie Van Leeuwenhoek 93: 305–313. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  26. Shah H. N. , Collins M. D. . ( 1980;). Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. . J Appl Bacteriol 48: 75–87.[PubMed] [CrossRef]
    [Google Scholar]
  27. Shirling E. B. G. , Gottlieb D. . ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16: 313–340.[CrossRef]
    [Google Scholar]
  28. Sun Y. , Wan C. X. , Zhang L. L. . ( 2015;). Identification of actinomycete TRM43006 from the soil of Populus euphratica forest and stydies on its secondary metabolites. . J Tarim Univ 27: 1–7.
    [Google Scholar]
  29. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  30. Waksman S. A. , Henrici A. T. . ( 1943;). The Nomenclature and Classification of the Actinomycetes. . J Bacteriol 46: 337–341.[PubMed]
    [Google Scholar]
  31. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  32. Williams S. T. , Goodfellow M. , Alderson G. , Wellington E. M. , Sneath P. H. , Sackin M. J. . ( 1983;). Numerical classification of Streptomyces and related genera. . J Gen Microbiol 129: 1743–1813. [CrossRef] [PubMed]
    [Google Scholar]
  33. Xu P. , Li W. J. , Tang S. K. , Zhang Y. Q. , Chen G. Z. , Chen H. H. , Xu L. H. , Jiang C. L. . ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. . Int J Syst Evol Microbiol 55: 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001049
Loading
/content/journal/ijsem/10.1099/ijsem.0.001049
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error