sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the Free

Abstract

Two isolates of aerobic methanotrophic bacteria, strains Sph1 and Sph2, were obtained from cold methane seeps in a floodplain of the river Mukhrinskaya, Irtysh basin, West Siberia. Another morphologically and phenotypically similar methanotroph, strain OZ2, was isolated from a sediment of a subarctic freshwater lake, Archangelsk region, northern Russia. Cells of these three strains were Gram-stain-negative, light-pink-pigmented, non-motile, encapsulated, large cocci that contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme and utilized only methane and methanol. Strains Sph1, Sph2 and OZ2 were able to grow at a pH range of 4.0–8.9 (optimum at pH 6.0–7.0) and at temperatures between 2 and 36 °C. Although their temperature optimum was at 20–25 °C, these methanotrophs grew well at lower temperatures, down to 4 °C. The major cellular fatty acids were Cω5, Cω6, Cω7, Cω8, C and C; the DNA G+C content was 51.4–51.9 mol%. Strains Sph1, Sph2 and OZ2 displayed nearly identical (99.1–99.7 % similarity) 16S rRNA gene sequences and belonged to the family of the class . The most closely related organism was HT12 (96.0–96.5 % 16S rRNA gene sequence similarity and 90 % sequence similarity). The novel isolates, however, differed from HT12 by cell morphology, pigmentation, absence of soluble methane monooxygenase, more active growth at low temperatures, growth over a broader pH range and higher DNA G+C content. On the basis of these differences, we propose a novel species, sp. nov., to accommodate these methanotrophs. Strain Sph1 (=LMG 29227=VKM B-3018) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001046
2016-06-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2417.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001046&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [View Article][PubMed]
    [Google Scholar]
  2. Bowman J. P., Skerratt J. H., Nichols P. D., Sly L. I. 1991; Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Lett 85:15–22 [View Article]
    [Google Scholar]
  3. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs . Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  4. Dieser M., Broemsen E. L., Cameron K. A., King G. M., Achberger A., Choquette K., Hagedorn B., Sletten R., Junge K., Christner B. C. 2014; Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J 8:2305–2316 [View Article][PubMed]
    [Google Scholar]
  5. Dunfield P. F., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Dedysh S. N. 2003; Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1989; PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  7. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. A., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236[PubMed]
    [Google Scholar]
  8. Hamilton R., Kits K. D., Ramonovskaya V. A., Rozova O. N., Yurimoto H., Iguchi H., Khmelenina V. N., Sakai Y., Dunfield P. F. et al. 2015; Draft genomes of gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. Genome Announc 3:e0051515 [View Article][PubMed]
    [Google Scholar]
  9. He R., Wooller M. J., Pohlman J. W., Catranis C., Quensen J., Tiedje J. M., Leigh M. B. 2012; Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ Microbiol 14:1403–1419 [View Article][PubMed]
    [Google Scholar]
  10. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [View Article][PubMed]
    [Google Scholar]
  11. Hutchens E., Radajewski S., Dumont M. G., McDonald I. R., Murrell J. C. 2004; Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Iguchi H., Yurimoto H., Sakai Y. 2011; Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815 [View Article][PubMed]
    [Google Scholar]
  13. Kip N., Ouyang W., van Winden J., Raghoebarsing A., van Niftrik L., Pol A., Pan Y., Bodrossy L., van Donselaar E. G., other authors. 2011; Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77:5643–5654 [View Article][PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  15. McDonald I. R., Kenna E. M., Murrell J. C. 2001; Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121
    [Google Scholar]
  16. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D. 1997; Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) Genes using the polymerase chain reaction (PCR). Microb Ecol 33:21–31[PubMed] [CrossRef]
    [Google Scholar]
  17. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [View Article]
    [Google Scholar]
  18. Oshkin I. Y., Wegner C. E., Lüke C., Glagolev M. V., Filippov I. V., Pimenov N. V., Liesack W., Dedysh S. N. 2014; Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers. Appl Environ Microbiol 80:5944–5954 [View Article][PubMed]
    [Google Scholar]
  19. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [View Article][PubMed]
    [Google Scholar]
  20. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [View Article][PubMed]
    [Google Scholar]
  21. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–213 [View Article][PubMed]
    [Google Scholar]
  22. Damsté J. S., Rijpstra W. I., Hopmans E. C., Weijers J. W., Foesel B. U., Overmann J., Dedysh S. N, Sinninghe Damste J. S. 2011; 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77:4147–4154 [View Article][PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  24. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001046
Loading
/content/journal/ijsem/10.1099/ijsem.0.001046
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed