1887

Abstract

During a study about the diversity of ) in Brazil, seven strains from southern and southeastern regions were isolated in monospecifc cultures and submitted to polyphasic evaluation (morphological, ecological, cytological and molecular studies). The populations studied were found to be morphologically similar to (filaments narrowed and bent at the end) and cytologically different (thylakoids’ arrangement - radial distribution in Brazilian strains and parietal distribution in ). The original habitats were very diverse among the Brazilian strains (freshwater, wet soil and barks of trees). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains were placed together in a very distinctive and highly supported clade. Thus, the set of characteristics of the strains resulted in the recognition of the new genus Martins et Branco gen. nov. with two species [ gen. nov., sp. nov. (type species) and sp. nov.], distinguishable by differences in genetic and ecological characteristics and described under the provisions of the International Code of Nomenclature for algae, fungi and plants. Secondary structures of D1-D1′, box-B and V3 regions were conserved in gen. nov. sp. nov. and more variable in sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001044
2016-06-10
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2396.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001044&mimeType=html&fmt=ahah

References

  1. Casamatta D., Johansen J. R., Vis M. L., Broadwater S. T.. 2005; Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol41:421–438 [CrossRef]
    [Google Scholar]
  2. Casamatta D., Stanić D., Gantar M., Richardson L. L.. 2012; Characterization of Roseofilum reptotaenium (Oscillatoriales, Cyanobacteria) gen. et sp. nov. isolated from Caribbean black band disease. Phycologia51:489–499 [CrossRef]
    [Google Scholar]
  3. Chatchawan T., Komárek J., Strunecký O., Šmarda J., Peerapornpisal Y.. 2012; Oxymena, a new genus separated from the genus phormidium (cyanophyta). Cryptogamie Algologie33:41–59 [CrossRef]
    [Google Scholar]
  4. Comte K., Sabacká M., Carré-Mlouka A., Elster J., Komárek J.. 2007; Relationships between the arctic and the antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol59:366–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Cotta-Pereira G., Rodrigo F. G., David-Ferreira J. F.. 1976; The use of tannic acid-glutaraldehyde in the study of elastic and elastic-related fibers. Stain Technol51:7–11 [CrossRef][PubMed]
    [Google Scholar]
  6. Ewing B., Green P.. 1998; Base-calling of automated sequencer traces using Phred. II. Error Probabilities. Genome Res8:186–194 [CrossRef]
    [Google Scholar]
  7. Ewing B., Hillier L., Wendl M. C., Green P.. 1998; Base-calling of automated sequencer traces using Phred. I. Accuracy Assessment. Genome Res8:175–185 [CrossRef]
    [Google Scholar]
  8. Garcia-Pichel F., Prufert-Bebout L., Muyzer G.. 1996; Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol62:3284–3291[PubMed]
    [Google Scholar]
  9. Geitler L.. 1932; Cyanophyceae.. In Rabenhorst’s Kryptogamenflora Von Deutschland, Österreich Und Der Schweiz 2vol. 14 p.1192 Aufl. Leipzig: Verlagsgesellschaft: Akademische;
    [Google Scholar]
  10. Gomont M. M.. 1892; Monographie des oscillariées (nostocacées homocystées). Sci Nat Bot Sér 716:91–264
    [Google Scholar]
  11. Gordon D., Abajian C., Green P.. 1998; Consed: a graphical tool for sequence finishing. Genome Res8:195–202 [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T. A.. 1999; Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  13. Hašler P., Dvořák P., Johansen J. R., Kitner M., Ondrej, V, Poulíčková A.. 2012; Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea12:341–356 [CrossRef]
    [Google Scholar]
  14. Hašler P., Dvořák P., Poulíčková A., Casamatta D. A.. 2014; A novel genus Ammassolinea gen. nov. (cyanobacteria) isolate from subtropical epipelic habitats. Fottea14:241–248[CrossRef]
    [Google Scholar]
  15. Huelsenbeck J. P., Ronquist F.. 2001; MrBayes: Bayesian inference of phylogeny. Bioinformatics17:745–755 [CrossRef]
    [Google Scholar]
  16. Komárek J., Anagnostidis K.. 2005; Cyanoprokaryota 1. Teil: Oscillatoriales. In Subwasserflora Von Mitteleuropa p.759. Edited by Büdel B., Krienitz L., Gäärtner G., Schagerl M.. Verlag Heidelberg: Elsevier/Spektrum Akademischer;
    [Google Scholar]
  17. Komárek J., Kaštovský J., Mareš J., Johansen J. R.. 2014; Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia86:295–335
    [Google Scholar]
  18. Komárek J., Kaštovský J., Ventura S., Turicchia S., Smarda J.. 2009; The cyanobacterial genus Phormidesmis . Algol Stud129:41–59 [CrossRef]
    [Google Scholar]
  19. Lowe T. M., Eddy S. R.. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  20. Marquardt J., Palinska K. A.. 2007; Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol187:397–413 [CrossRef][PubMed]
    [Google Scholar]
  21. Mühlsteinová R., Johansen J. R., Pietrasiak N., Martins M. P., Osorio-Santos K., Warren S. D.. 2014; Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus . Phytotaxa163:241–261 [CrossRef]
    [Google Scholar]
  22. Neilan B. A., Jacobs D., Del Dot T., Blackall L. L., Hawkins P. R., Cox P. T., Goodman A. E.. 1997; rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis . Int J Syst Bacteriol47:693–697 [CrossRef][PubMed]
    [Google Scholar]
  23. Osorio-Santos K., Pietrasiak N., Bohunická M., Miscoe L. H., Kováčik L., Martins M. P., Johansen J. R.. 2014; Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. Eur J Phycol49:450–470 [CrossRef]
    [Google Scholar]
  24. Palinska K. A., Marquardt J.. 2008; Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales). Arch Microbiol189:325–335 [CrossRef][PubMed]
    [Google Scholar]
  25. Palinska K. A., Liesack W., Rhiel E., Krumbein W. E.. 1996; Phenotype variability of identical genotypes: The need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol166:224–233 [CrossRef][PubMed]
    [Google Scholar]
  26. Posada D., Crandall K. A.. 1998; Modeltest: testing the model of DNA substitution. Bioinformatics14:817–818 [CrossRef][PubMed]
    [Google Scholar]
  27. Premanandh J., Priya B., Prabaharan D., Uma L.. 2009; Genetic heterogeneity of the marine cyanobacterium Leptolyngbya valderiana (Pseudanabaenaceae) evidenced by RAPD molecular markers and 16S rDNA sequence data. J Plankton Res31:1141–1150 [CrossRef]
    [Google Scholar]
  28. Sciuto K., Andreoli C., Rascio N., La Rocca N., Moro I.. 2012; Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics28:1–18 [CrossRef]
    [Google Scholar]
  29. Siegesmund M. A., Johansen J. R., Karsten U., Friedl T.. 2008; Coleofasciculus gen. nov. (Cyanobacteria): Morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol44:1572–1585 [CrossRef][PubMed]
    [Google Scholar]
  30. Stanier R. Y., Deruelles J., Rippka R., Herdman M., Waterbury J. B.. 1979; Generic assignments, strains histories and properties of pure cultures of cyanobacteria. J Gen Microbiol111:1–61 [CrossRef]
    [Google Scholar]
  31. Strunecký O., Elster J., Komárek J.. 2010; Phylogenetic relationships between geographically separate Phormidium cyanobacteria: Is there a link between north and south polar regions?. Polar Biol33:1419–1428 [CrossRef]
    [Google Scholar]
  32. Strunecký O., Elster J., Komárek J.. 2011; Taxonomic revision of the freshwater cyanobacterium “Phormidiummurrayi = Wilmottia murrayi . Fottea11:57–71[CrossRef]
    [Google Scholar]
  33. Strunecký O., Komárek J., Elster J.. 2012; Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Polish Polar Res33:369–382 [CrossRef]
    [Google Scholar]
  34. Strunecký O., Komárek J., Šmarda J.. 2014; Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from polyphyletic Phormidium on the basis of combined molecular and cytomorphological marker. Preslia86:193–207
    [Google Scholar]
  35. Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J.. 2013; Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). J Phycol49:1167–1180 [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol and Evol30:2725–2729 [CrossRef]
    [Google Scholar]
  37. Taton A., Grubisic S., Brambilla E., Wit R., Wilmotte A.. 2003; Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, antarctica): a morphological and molecular approach. Appl Environ Microbiol69:5157–5169 [CrossRef][PubMed]
    [Google Scholar]
  38. Taton A., Grubisic S., Ertz D., Hodgson D. A., Piccardi R., Biondi N., Tredici M. R., Mainini M., Losi D. et al. 2006; Polyphasic study of Antarctic cyanobaterial strains. J Phycol42:1257–1270[CrossRef]
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  40. Venable J. H., Coggeshall R.. 1965; A simplified lead citrate stain for use in electron microscopy. J Cell Biol25:407–408[PubMed][CrossRef]
    [Google Scholar]
  41. Ward D. M., Ferris M. J., Nold S. C., Bateson M. M.. 1998; A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev62:1353–1370[PubMed]
    [Google Scholar]
  42. Watson M. L.. 1958; Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol4:475–478[PubMed][CrossRef]
    [Google Scholar]
  43. Woese C. R., Kandleer O., Wheelis M. L.. 1990; Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A87:4576–4579 [CrossRef]
    [Google Scholar]
  44. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001044
Loading
/content/journal/ijsem/10.1099/ijsem.0.001044
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error