1887

Abstract

A Gram-stain-negative, aerobic, coccoid to small rod-shaped bacterium, designated X1, was isolated from sludge collected from the vicinity of a pesticide manufacturer in Nantong, Jiangsu Province, China. Based on 16S rRNA gene sequence analysis, strain X1 belonged to the genus Cupriavidus , and was most closely related to Cupriavidus taiwanensis LMG 19424(99.1 % 16S rRNA gene sequence similarity) and Cupriavidus alkaliphilus LMG 26294 (98.9 %). Strain X1showed 16S rRNA gene sequence similarities of 97.2–98.2 % with other species of the genus Cupriavidus . The major cellular fatty acids of strain X1 were C16 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3), C18 : 1ω7c and C17 : 0 cyclo, and the major respiratory quinone was ubiquinone Q-8. The major polar lipids of strain X1 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phospholipid and hydroxyphosphatidylethanolamine. The DNA G+C content was 66.6 mol%. The DNA–DNA relatedness values of strain X1 with the five reference strains C. taiwanensis LMG 19424, C. alkaliphilus LMG 26294, Cupriavidus necator LMG 8453, Cupriavidus gilardii LMG 5886 and ‘ Cupriavidus yeoncheonense ' KCTC 42053 were lower than 70 %. The results obtained from phylogenetic analysis, phenotypic characterization and DNA–DNA hybridization indicated that strain X1 should be proposed to represent a novel species of the genus Cupriavidus , for which the name Cupriavidus nantongensis sp. nov. is proposed. The type strain is X1(=KCTC 42909=LMG 29218).

Keyword(s): Cupriavidus and Proteobacteria
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001034
2016-06-10
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2335.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001034&mimeType=html&fmt=ahah

References

  1. Bernardet J. F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52: 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bertani G. . ( 1951;). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . . J Bacteriol 62: 293–300.[PubMed]
    [Google Scholar]
  3. Chen W. M. , Laevens S. , Lee T. M. , Coenye T. , De Vos P. , Mergeay M. , Vandamme P. . ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51: 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cleenwerck I. , Vandemeulebroecke K. , Janssens D. , Swings J. . ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. . Int JSyst Evol Microbiol 52: 1551–1558.
    [Google Scholar]
  5. Coenye T. , Falsen E. , Vancanneyt M. , Hoste B. , Govan J. R. , Kersters K. , Vandamme P. . ( 1999;). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. . Int J Syst Bacteriol 49: 405–413. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cuadrado V. , Gomila M. , Merini L. , Giulietti A. M. , Moore E. R. . ( 2010;). Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil. . Int J Syst Evol Microbiol 60: 2606–2612. [CrossRef] [PubMed]
    [Google Scholar]
  7. da Silva K. , Florentino L. A. , da Silva K. B. , de Brandt E. , Vandamme P. , de Souza Moreira F. M. . ( 2012;). Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. . Syst Appl Microbiol 35: 175–182. [CrossRef] [PubMed]
    [Google Scholar]
  8. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  9. Estrada-de Los Santos P. , Bustillos-Cristales R. , Caballero-Mellado J. . ( 2001;). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. . Appl Environ Microbiol 67: 2790–2798. [CrossRef] [PubMed]
    [Google Scholar]
  10. Estrada-de los Santos P. , Martínez-Aguilar L. , López-Lara I. M. , Caballero-Mellado J. . ( 2012;). Cupriavidus alkaliphilus sp. nov., a new species associated with agricultural plants that grow in alkaline soils. . Syst Appl Microbiol 35: 310–314. [CrossRef] [PubMed]
    [Google Scholar]
  11. Estrada-de Los Santos P. , Solano-Rodríguez R. , MatsumuraPaz L. T. , Vásquez-Murrieta M. S. , Martínez-Aguilar L. . ( 2014;). Cupriavidus plantarum sp. nov., a plant-associated species. . Arch Microbiol 196: 811–817. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  13. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  14. Fitch W. M. . ( 1971;). Toward defining the course of evolution: Minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  15. Kageyama C. , Ohta T. , Hiraoka K. , Suzuki M. , Okamoto T. , Ohishi K. . ( 2005;). Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov. . Arch Microbiol 183: 56–65. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kuykendall L. D. , Roy M. A. , O'Neill J. J. , Devine T. E. . ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . . Int J Syst Bacteriol 38: 358–361. [CrossRef]
    [Google Scholar]
  19. Lane D. J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics. pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester, UK:: John Wiley and Sons;.
    [Google Scholar]
  20. Lányí B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67. [CrossRef]
    [Google Scholar]
  21. Makkar N. S. , Casida L. E.. . ( 1987;). Cupriavidus necator gen. nov., sp. nov. a nonobligate bacterial predator of bacteria in soil. . Int J Syst Bacteriol 37: 323–326. [CrossRef]
    [Google Scholar]
  22. Martínez-Aguilar L. , Caballero-Mellado J. , Estrada-de los Santos P. . ( 2013;). Transfer of Wautersia numazuensis to the genus Cupriavidus as Cupriavidus numazuensis comb. nov. . Int J Syst Evol Microbiol 63: 208–211. [CrossRef] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff J. P. , Göker M. , Spröer C. , Klenk H. P. . ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  25. Miller L. T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16: 584–586.[PubMed]
    [Google Scholar]
  26. Pongsilp N. , Nimnoi P. , Lumyong S. . ( 2012;). Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques. . Worl J Microbiol Biotechnol 28: 615–626. [CrossRef]
    [Google Scholar]
  27. Rzhetsky A. , Nei M. . ( 1992;). A simple method for estimating and testing minimum evolution trees. . Mol Biol Evol 9: 945–967.
    [Google Scholar]
  28. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  29. Singh P. , Kim Y. J. , Nguyen N. L. , Hoang V. A. , Sukweenadhi J. , Farh M.-A. , Yang D. C. . ( 2015;). Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. . Antonie Van Leeuwenhoek 107: 749–758. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: Tarnished gold standards. . Microbiol Today 33: 152–155.
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). MEGA5: olecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tindall B. J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  34. Tindall B. J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Letts 66: 199–202. [CrossRef]
    [Google Scholar]
  35. Tindall B. J. , Sikorski J. , Smibert R. A. , Kreig N. R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . Washington, DC:: American Society of Microbiology;.
    [Google Scholar]
  36. Vandamme P. , Coenye T. . ( 2004;). Taxonomy of the genus Cupriavidus: A tale of lost and found. . Int J Syst Evol Microbiol 54: 2285–2289. [CrossRef] [PubMed]
    [Google Scholar]
  37. Vaneechoutte M. , Kämpfer P. , De Baere T. , Falsen E. , Verschraegen G. . ( 2004;). Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia[Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. . Int J Syst Evol Microbiol 54: 317–327. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wang D. , Xue Q. , Zhou X. , Tang X. , Hua R. . ( 2014;). Isolation and characterization of a highly efficient chlorpyrifos degrading strain of Cupriavidus taiwanensis from sludge. . J Basic Microbiol 55: 229–235. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wayne L. G. , Brenner D. J. , Colwell R. , Grimont P. A. D. , Kandler O. , Krichevsky M. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol 37: 463–464.[CrossRef]
    [Google Scholar]
  40. Yabuuchi E. , Kosako Y. , Yano I. , Hotta H. , Nishiuchi Y. . ( 1995;). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. . Microbiol Immunol 39: 897–904.[PubMed] [CrossRef]
    [Google Scholar]
  41. Yu X. , Liu X. , Zhu T. H. , Liu G. H. , Mao C. . ( 2011;). Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. . Biol 47: 437–446. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001034
Loading
/content/journal/ijsem/10.1099/ijsem.0.001034
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error