1887

Abstract

A Gram-stain-negative, aerobic, coccoid to small rod-shaped bacterium, designated X1, was isolated from sludge collected from the vicinity of a pesticide manufacturer in Nantong, Jiangsu Province, China. Based on 16S rRNA gene sequence analysis, strain X1 belonged to the genus , and was most closely related to LMG 19424(99.1 % 16S rRNA gene sequence similarity) and LMG 26294 (98.9 %). Strain X1showed 16S rRNA gene sequence similarities of 97.2–98.2 % with other species of the genus . The major cellular fatty acids of strain X1 were C, Cω7 and/or iso-C 2-OH (summed feature 3), Cω7 and C cyclo, and the major respiratory quinone was ubiquinone Q-8. The major polar lipids of strain X1 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phospholipid and hydroxyphosphatidylethanolamine. The DNA G+C content was 66.6 mol%. The DNA–DNA relatedness values of strain X1 with the five reference strains LMG 19424, LMG 26294, LMG 8453, LMG 5886 and ‘' KCTC 42053 were lower than 70 %. The results obtained from phylogenetic analysis, phenotypic characterization and DNA–DNA hybridization indicated that strain X1 should be proposed to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is X1(=KCTC 42909=LMG 29218).

Keyword(s): Cupriavidus and Proteobacteria
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001034
2016-06-10
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2335.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001034&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  2. Bertani G.. 1951; Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol62:293–300[PubMed]
    [Google Scholar]
  3. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int JSyst Evol Microbiol52:1551–1558
    [Google Scholar]
  5. Coenye T., Falsen E., Vancanneyt M., Hoste B., Govan J. R., Kersters K., Vandamme P.. 1999; Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol49:405–413 [CrossRef][PubMed]
    [Google Scholar]
  6. Cuadrado V., Gomila M., Merini L., Giulietti A. M., Moore E. R.. 2010; Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol60:2606–2612 [CrossRef][PubMed]
    [Google Scholar]
  7. da Silva K., Florentino L. A., da Silva K. B., de Brandt E., Vandamme P., de Souza Moreira F. M.. 2012; Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol35:175–182 [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  9. Estrada-de Los Santos P., Bustillos-Cristales R., Caballero-Mellado J.. 2001; Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol67:2790–2798 [CrossRef][PubMed]
    [Google Scholar]
  10. Estrada-de los Santos P., Martínez-Aguilar L., López-Lara I. M., Caballero-Mellado J.. 2012; Cupriavidus alkaliphilus sp. nov., a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol35:310–314 [CrossRef][PubMed]
    [Google Scholar]
  11. Estrada-de Los Santos P., Solano-Rodríguez R., MatsumuraPaz L. T., Vásquez-Murrieta M. S., Martínez-Aguilar L.. 2014; Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol196:811–817 [CrossRef][PubMed]
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  14. Fitch W. M.. 1971; Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  15. Kageyama C., Ohta T., Hiraoka K., Suzuki M., Okamoto T., Ohishi K.. 2005; Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov. Arch Microbiol183:56–65 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  19. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp.115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester, UK: John Wiley and Sons;
    [Google Scholar]
  20. Lányí B.. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol19:1–67 [CrossRef]
    [Google Scholar]
  21. Makkar N. S., Casida L. E... 1987; Cupriavidus necator gen. nov., sp. nov. a nonobligate bacterial predator of bacteria in soil. Int J Syst Bacteriol37:323–326 [CrossRef]
    [Google Scholar]
  22. Martínez-Aguilar L., Caballero-Mellado J., Estrada-de los Santos P.. 2013; Transfer of Wautersia numazuensis to the genus Cupriavidus as Cupriavidus numazuensis comb. nov. Int J Syst Evol Microbiol63:208–211 [CrossRef][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P.. 2013; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  25. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  26. Pongsilp N., Nimnoi P., Lumyong S.. 2012; Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques. Worl J Microbiol Biotechnol28:615–626 [CrossRef]
    [Google Scholar]
  27. Rzhetsky A., Nei M.. 1992; A simple method for estimating and testing minimum evolution trees. Mol Biol Evol9:945–967
    [Google Scholar]
  28. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  29. Singh P., Kim Y. J., Nguyen N. L., Hoang V. A., Sukweenadhi J., Farh M.-A., Yang D. C.. 2015; Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie Van Leeuwenhoek107:749–758 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: Tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; MEGA5: olecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  34. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Letts66:199–202 [CrossRef]
    [Google Scholar]
  35. Tindall B. J., Sikorski J., Smibert R. A., Kreig N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society of Microbiology;
    [Google Scholar]
  36. Vandamme P., Coenye T.. 2004; Taxonomy of the genus Cupriavidus: A tale of lost and found. Int J Syst Evol Microbiol54:2285–2289 [CrossRef][PubMed]
    [Google Scholar]
  37. Vaneechoutte M., Kämpfer P., De Baere T., Falsen E., Verschraegen G.. 2004; Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia[Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol54:317–327 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang D., Xue Q., Zhou X., Tang X., Hua R.. 2014; Isolation and characterization of a highly efficient chlorpyrifos degrading strain of Cupriavidus taiwanensis from sludge. J Basic Microbiol55:229–235 [CrossRef][PubMed]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R., Grimont P. A. D., Kandler O., Krichevsky M., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol37:463–464[CrossRef]
    [Google Scholar]
  40. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y.. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol39:897–904[PubMed][CrossRef]
    [Google Scholar]
  41. Yu X., Liu X., Zhu T. H., Liu G. H., Mao C.. 2011; Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biol47:437–446 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001034
Loading
/content/journal/ijsem/10.1099/ijsem.0.001034
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error