1887

Abstract

A Gram-stain-negative, rod-shaped bacterium that formed yellow and viscous colonies was isolated from arsenic-contaminated soil of the Jianghan plain, Hubei Province, China, and it was designated 26-35. This strain was capable of resisting arsenate and arsenite with MICs of 40 and 20 mM, respectively. The 16S rRNA gene of the novel isolate displayed 96.7–94.2 % sequence similarities to those of other known species of the genus . The respiratory quinone was ubiquinone-8 (Q-8). The DNA G+C content was 71.4 mol%. The predominant cellular fatty acids were iso-C, iso-C, iso-C, iso-C, iso-C3-OH and iso-C 9. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic and physiological analysis indicated that the isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 26-35(=KCTC 42824=CCTCC AB 2014326).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001024
2016-06-10
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2291.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001024&mimeType=html&fmt=ahah

References

  1. Ao L., Zeng X. C., Nie Y., Mu Y., Zhou L., Luo X.. 2014; Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment. Int J Syst Evol Microbiol64:3369–3374 [CrossRef][PubMed]
    [Google Scholar]
  2. Artursson V., Jansson J. K.. 2003; Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microb69:6208–6215[CrossRef]
    [Google Scholar]
  3. Baik K. S., Park S. C., Kim M. S., Kim E. M., Park C., Chun J., Seong C. N.. 2008; Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol58:2904–2908 [CrossRef][PubMed]
    [Google Scholar]
  4. Cammarano P., Palm P., Creti R., Ceccarelli E., Sanangelantoni A. M., Tiboni O.. 1992; Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol34:396–405 [CrossRef][PubMed]
    [Google Scholar]
  5. Cao H., Nie Y., Zeng X. C., Xu L., He Z., Luo X., Wu R.. 2014; Pontibacter yuliensis sp. nov., isolated from soil. Int J Syst Evol Microbiol64:968–972 [CrossRef][PubMed]
    [Google Scholar]
  6. Chou J. H., Cho N. T., Arun A. B., Young C. C., Chen W. M.. 2008; Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol58:2051–2055 [CrossRef][PubMed]
    [Google Scholar]
  7. Doolittle W. F.. 1999; Phylogenetic classification and the universal tree. Science284:2124–2128[PubMed][CrossRef]
    [Google Scholar]
  8. Fan X., Yu T., Li Z., Zhang X. H.. 2014; Luteimonas abyssi sp., nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol64:668–674 [CrossRef][PubMed]
    [Google Scholar]
  9. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. 2000; Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol50:Pt 1273–282 [CrossRef][PubMed]
    [Google Scholar]
  10. Huang S. B., Liu C. R., Wang Y. X., Zhan H. B.. 2014; Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system. J Environ Sci Health A Tox Hazard Subst Environ Eng49:478–489 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim M., Oh H. S., Park S. C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing Eztaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  14. Li H., Zeng X. C., He Z., Chen X., E G., Han Y., Wang Y.. 2016; Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor. Water Res101:393–401 [CrossRef][PubMed]
    [Google Scholar]
  15. Luo X., Wang J., Zeng X. C., Wang Y., Zhou L., Nie Y., Dai J., Fang C.. 2012; Mycetocola manganoxydans sp. nov., an actinobacterium isolated from the Taklamakan desert. Int J Syst Evol Microbiol62:2967–2970 [CrossRef][PubMed]
    [Google Scholar]
  16. Mackie T., McCartney J. E.. 1989; Organization of the clinical laboratory. In Mackie and McCartney’s Practical Medical Microbiology, 13th edn. pp.21–22 Edited by Collee J. G., Duguid J. P., Fraser A. G., Marmion B. P.. Edinburgh: Churchill Livingstone;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241[CrossRef]
    [Google Scholar]
  19. Mohit V., Archambault P., Toupoint N., Lovejoy C.. 2014; Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing. Appl Environ Microbiol80:2071–2083[CrossRef]
    [Google Scholar]
  20. Moore D. D., Dowhan D.. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp.2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
  21. Park Y. J., Park M. S., Lee S. H., Park W., Lee K., Jeon C. O.. 2011; Luteimonas lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol61:2729–2733 [CrossRef][PubMed]
    [Google Scholar]
  22. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Yoon J. H., Oh H. M., Bae J. W.. 2008; Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol46:525–529 [CrossRef][PubMed]
    [Google Scholar]
  23. Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V.. 2013; Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol63:1261–1266 [CrossRef][PubMed]
    [Google Scholar]
  24. Ryu S. H., Chung B. S., Le N. T., Jang H. H., Yun P. Y., Park W., Jeon C. O.. 2008; Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int J Syst Evol Microbiol58:633–636 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. 1987; The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  26. Shakeela Q., Shehzad A., Tang K., Zhang Y., Zhang X. H.. 2015; Ichthyenterobacterium magnum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from olive flounder (Paralichthys olivaceus). Int J Syst Evol Microbiol65:1186–1192 [CrossRef][PubMed]
    [Google Scholar]
  27. Smibert R. M.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Sun Z. B., Zhang H., Yuan X. F., Wang Y. X., Feng D. M., Wang Y. H., Feng Y. J.. 2012; Luteimonas cucumeris sp., nov., isolated a from a cucumber leaf. Int J Syst Evol Microbiol62:2916–2920 [CrossRef][PubMed]
    [Google Scholar]
  29. Wu G., Liu Y., Li Q., Du H., You J., Li H., Ke C., Zhang X., Yu J., Zhao T.. 2013; Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol63:3352–3357 [CrossRef][PubMed]
    [Google Scholar]
  30. Xin Y., Cao X., Wu P., Xue S.. 2014; Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol52:729–733 [CrossRef][PubMed]
    [Google Scholar]
  31. Xu L., Zeng X. C., Nie Y., Luo X., Zhou E., Zhou L., Pan Y., Li W.. 2014; Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae . PLoS One9:e92294 [CrossRef][PubMed]
    [Google Scholar]
  32. Young C. C., Kämpfer P., Chen W. M., Yen W. S., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Lin K. Y., Chou J. H.. 2007; Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol57:741–744 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. 2010; Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol60:1581–1584 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001024
Loading
/content/journal/ijsem/10.1099/ijsem.0.001024
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error