1887

Abstract

A Gram-stain-negative, aerobic, non-motile, non-spore-forming bacterium, strain 0511ARD5E5, was isolated from an air sample collected in Ardales Cave (Malaga, Spain). Strain 0511ARD5E5 grew at 4–37 °C and in the presence of 0–4 % (w/v) NaCl [optimally at 25 °C and with 1 % (w/v) NaCl]. Cells were catalase- and oxidase-positive. The major respiratory quinone was ubiquinone-10. The predominant fatty acids were C18:1 ω7c and C16:0. The DNA G+C content was 63.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 0511ARD5E5 was a member of the genus Paracoccus and was related most closely to Paracoccus aminophilus DSM 8538 and Paracoccus marinus CIP 108500(96.93 and 96.92 % similarity, respectively). Strain 0511ARD5E5 exhibited DNA–DNA relatedness of 47 % to P. aminophilus DSM 8538 and 31 % to P. marinus CIP 108500. Chemotaxonomic, phenotypic and phylogenetic analyses indicated that strain 0511ARD5E5 represents a novel species of the genus Paracoccus , for which the name Paracoccus cavernae sp. nov. is proposed. The type strain is 0511ARD5E5 (=LMG 27962=CECT 8482).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001018
2016-06-10
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2265.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001018&mimeType=html&fmt=ahah

References

  1. Davis D. H. , Doudoroff M. , Stanier R. Y. , Mandel M. . ( 1969;). Proposal to reject the genus Hydrogenomonas: taxonomic implications. . Int J Syst Bacteriol 19: 375–390.[CrossRef]
    [Google Scholar]
  2. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  3. Halebian S. , Harris B. , Finegold S. M. , Rolfei R. D. . ( 1981;). Rapid method that aids in distiguishing Gram-positive from Gram-negative anaerobic bacteria. . J Clin Microbiol 13: 444–448.[PubMed]
    [Google Scholar]
  4. Jung Y. T. , Park S. , Lee J. S. , Yoon J. H. . ( 2014;). Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 64: 2763–2769. [CrossRef] [PubMed]
    [Google Scholar]
  5. Jurado V. , Kroppenstedt R. M. , Saiz-Jimenez C. , Klenk H. P. , Mouniée D. , Laiz L. , Couble A. , Pötter G. , Boiron P. , Rodríguez-Nava V. . ( 2009;). Hoyosella altamirensis gen. nov., sp. nov., a new member of the order Actinomycetales isolated from a cave biofilm. . Int J Syst Evol Microbiol 59: 3105–3110. [CrossRef] [PubMed]
    [Google Scholar]
  6. Katayama Y. , Hiraishi A. , Kuraishi H. . ( 1995;). Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. . Microbiology 141: 1469–1477. [CrossRef] [PubMed]
    [Google Scholar]
  7. Khan S. T. , Takaichi S. , Harayama S. . ( 2008;). Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. . Int J Syst Evol Microbiol 58: 383–386. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kluge A. G. , Farris F. S. . ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18: 1–32.[CrossRef]
    [Google Scholar]
  10. Laiz L. , Miller A. Z. , Jurado V. , Akatova E. , Sanchez-Moral S. , Gonzalez J. M. , Dionísio A. , Macedo M. F. , Saiz-Jimenez C. . ( 2009;). Isolation of five Rubrobacter strains from biodeteriorated monuments. . Naturwissenschaften 96: 71–79. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lee M. J. , Lee S. S. . ( 2013;). Paracoccus limosus sp. nov., isolated from activated sludge in a sewage treatment plant. . Int J Syst Evol Microbiol 63: 1311–1316. [CrossRef] [PubMed]
    [Google Scholar]
  12. Liu Z.-P. , Wang B.-J. , Liu X.-Y. , Dai X. , Liu Y.-H. , Liu S.-J. . ( 2008;). Paracoccus halophilus sp. nov isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. . Int J Syst Evol Microbiol 58: 257–261.[CrossRef]
    [Google Scholar]
  13. Ludwig W. , Mittenhuber G. , Friedrich C. G. . ( 1993;). Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. . Int J Syst Bacteriol 43: 363–367. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lányi B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. . In Methods in Microbiology,vol. 19 , pp. 1–67. Edited by Colwell R. R. , Grigorova R. . London:: Academic Press;.
    [Google Scholar]
  15. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . Mol Biol 3: 208–218.[CrossRef]
    [Google Scholar]
  16. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  17. Tambalo D. D. , Del Bel K. L. , Bustard D. E. , Greenwood P. R. , Steedman A. E. , Hynes M. F. . ( 2010;). Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. . Microbiology 156: 1673–1685. [CrossRef] [PubMed]
    [Google Scholar]
  18. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882.[PubMed] [CrossRef]
    [Google Scholar]
  20. Urakami T. , Araki H. , Oyanagi H. , Suzuki K.-I. , Komagata K. . ( 1990;). Paracoccus aminophilussp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. . Int J Syst Bacteriol 40: 287–291. [CrossRef] [PubMed]
    [Google Scholar]
  21. Urakami T. , Tamaoka J. , Suzuki K.-I. , Komagata K. . ( 1989;). Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. . Int J Syst Bacteriol 39: 116–121.[CrossRef]
    [Google Scholar]
  22. Urdiain M. , López-López A. , Gonzalo C. , Busse H. J. , Langer S. , Kämpfer P. , Hans-Jürgen B. . ( 2008;). Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense . . Syst Appl Microbiol 31: 339–351. [CrossRef] [PubMed]
    [Google Scholar]
  23. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001018
Loading
/content/journal/ijsem/10.1099/ijsem.0.001018
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error