1887

Abstract

Facultatively alkaliphilic strains, designated as strains IEB3and IEB14, were isolated as indigo-reducing strains from a fermented indigo ( Lour) liquor sample prepared in our laboratory using a medium containing an indigo fermentation liquor as a sole substrate. The 16S rRNA gene sequence phylogeny and similarity suggested that strains IEB3and IEB14 exhibit distinctive positions among the members of the genus and their closest neighbour was NH3 (similarity: 97.4 %) among the species with validly published names. The 16S rRNA sequence of strain IEB3was identical to that of strain IEB14. The cells of the isolates stained Gram-positive and were facultatively anaerobic, straight rods that were motile by a pair of subpolar flagella. Strains IEB3 and IEB14 grew at temperatures between 12 and 40 °C with optimum growth at 30‒33 °C and in the range of pH 7.5–12. Menaquinone-7 (MK-7) was detected as the major isoprenoid quinone. The DNA G+C contents of strains IEB3and IEB14 were 49.1 and 49.9 mol%, respectively. The whole-cell fatty acid profile mainly (>10 %) consisted of iso-C, iso-C and anteiso-C. DNA–DNA hybridization revealed a low relatedness value between strain IEB3 and the phylogenetically most closely related species, JCM 16507 (<7 % ). On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, the isolates represent a novel species within a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is IEB3 (=JCM 30817=NCIMB 14984).

Erratum
This article contains a correction applying to the following content:
Corrigendum to gen. nov., sp. nov., an alkaliphile that reduces indigo dye
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001015
2016-06-10
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2247.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001015&mimeType=html&fmt=ahah

References

  1. Aino K., Narihiro T., Minamida K., Kamagata Y., Yoshimune K., Yumoto I.. 2010; Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol74:174–183 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acids. J Appl Bacteriol48:452–470
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229[CrossRef]
    [Google Scholar]
  5. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416[CrossRef]
    [Google Scholar]
  6. Guindon S., Gascuel , O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704[PubMed][CrossRef]
    [Google Scholar]
  7. Hirota K., Aino K., Nodasaka Y., Morita N., Yumoto I.. 2013a; Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol63:464–469[CrossRef]
    [Google Scholar]
  8. Hirota K., Aino K., Nodasaka Y., Yumoto I.. 2013b; Oceanobacillus indicireducens sp. nov., a facultatively alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol63:1437–1442[CrossRef]
    [Google Scholar]
  9. Hirota K., Aino K., Yumoto I.. 2013c; Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol63:4303–4308[CrossRef]
    [Google Scholar]
  10. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120[PubMed][CrossRef]
    [Google Scholar]
  11. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. other authors 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  12. Marmur, J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218[PubMed][CrossRef]
    [Google Scholar]
  13. Minnikin D. E., Collins M. D., Goodfellow M.. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, oerskovia and related taxa. J Appl Bacteriol47:87–95[CrossRef]
    [Google Scholar]
  14. Nakajima K., Hirota K., Nodasaka Y., Yumoto , I.. 2005; Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol55:1525–1530 [CrossRef][PubMed]
    [Google Scholar]
  15. Nielsen P., Fritze D, Priest F. G.. 1995; Phenetic diversity of alkaliphilic strains: proposal for nine new species. Microbiology141:1745–1761[CrossRef]
    [Google Scholar]
  16. Nogi Y., Takami H., Horikoshi K.. 2005; Characterization of alkaliphilic bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol55:2309–2315 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  18. Sorokin I. D., Kravchenko I. K., Tourova T. P., Kolganova T. V., Boulygina E. S., Sorokin D. Y.. 2008; Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol58:2459–2464 [CrossRef][PubMed]
    [Google Scholar]
  19. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:856–849[PubMed][CrossRef]
    [Google Scholar]
  21. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  22. Takahara Y., Tanabe O.. 1960; Studies on the reduction of indigo in industrial fermentation Vat (VI): on the taxonomic characteristics of strain No. S-8. J Ferment Technol38:297–299
    [Google Scholar]
  23. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128[CrossRef]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Teather R. M., Wood P. J.. 1982; Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol43:777–780[PubMed]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[PubMed][CrossRef]
    [Google Scholar]
  27. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H.. 1998; Bacillus horti sp. nov., a new gram-negative alkaliphilic bacillus. Int J Syst Bacteriol48:565–571 [CrossRef][PubMed]
    [Google Scholar]
  28. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K.. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol51:349–355 [CrossRef][PubMed]
    [Google Scholar]
  29. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama , H.. 2002; Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol52:85–90 [CrossRef][PubMed]
    [Google Scholar]
  30. Yumoto I., Hirota K., Nodasaka Y., Yokota Y., Hoshino T., Nakajima , K.. 2004; Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol54:2379–2383 [CrossRef][PubMed]
    [Google Scholar]
  31. Yumoto I., Hirota K., Nodasaka Y., Tokiwa Y., Nakajima K.. 2008; Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbial58:901–905[CrossRef]
    [Google Scholar]
  32. Zavarzina D. G., Tourova T. P., Kolganva T. V., Boulygina E. S., Zhilina T. N.. 2009; Description of Anaerobacillus alkalilacustre gen. nov., sp. nov.―strictly anaerobic diazotrophilc bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology (Russia) [English Translation of Mikrobiologiya]78:723–732
    [Google Scholar]
  33. Zhang J., Wang J., Song F., Fang C., Xin Y., Zhang Y.. 2011; Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of rRNA group 6. Int J Syst Evol Microbial61:1078–1083[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001015
Loading
/content/journal/ijsem/10.1099/ijsem.0.001015
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error