1887

Abstract

Biocathode communities are of interest for a variety of applications, including electrosynthesis, bioremediation, and biosensors, yet much remains to be understood about the biological processes that occur to enable these communities to grow. One major difficulty in understanding these communities is that the critical autotrophic organisms are difficult to cultivate. An uncultivated, electroautotrophic bacterium previously identified as an uncultivated member of the family appears to be a key organism in an autotrophic biocathode microbial community. Metagenomic, metaproteomic and metatranscriptomic characterization of this community indicates that there is likely a single organism that utilizes electrons from the cathode to fix CO, yet this organism has not been obtained in pure culture. Fluorescence hybridization reveals that the organism grows as rod-shaped cells approximately 1.8 × 0.6 µm, and forms large clumps on the cathode. The genomic DNA G+C content was 59.2 mol%. Here we identify the key features of this organism and propose ‘ Tenderia electrophaga’, within the on the basis of low nucleotide and predicted protein sequence identity to known members of the orders and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001006
2016-06-10
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2178.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001006&mimeType=html&fmt=ahah

References

  1. Bose A., Gardel E. J., Vidoudez C., Parra E. A., Girguis P. R. 2014; Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5: [View Article][PubMed]
    [Google Scholar]
  2. Childers S. E., Ciufo S., Lovley D. R. 2002; Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769 [View Article][PubMed]
    [Google Scholar]
  3. Chin C. S., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J., Eichler E. E. 2013; Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569 [View Article][PubMed]
    [Google Scholar]
  4. Clark T. A., Murray I. A., Morgan R. D., Kislyuk A. O., Spittle K. E., Boitano M., Fomenkov A., Roberts R. J., Korlach J. 2012; Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 40:e29e29 [View Article][PubMed]
    [Google Scholar]
  5. Drake S. L., Koomey M. 1995; The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae . Mol Microbiol 18:975–986 [View Article][PubMed]
    [Google Scholar]
  6. Emerson D., Floyd M. M. 2005; Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Methods Enzymol 397:112–123 [View Article][PubMed]
    [Google Scholar]
  7. Forward J. A., Behrendt M. C., Wyborn N. R., Cross R., Kelly D. J. 1997; TRAP transporters: A new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse Gram-negative bacteria. J Bacteriol 179:5482–5493[PubMed]
    [Google Scholar]
  8. Fuchs B., Pernthaler J., Amann R. 2007; Single cell identification by fluorescence in situ hybridization. Methods for General and Molecular Microbiology 3:886–896
    [Google Scholar]
  9. Higgins C. F. 2001; ABC transporters: Physiology, structure and mechanism–an overview. Res Microbiol 152:205–210 [View Article][PubMed]
    [Google Scholar]
  10. Ishii T., Kawaichi S., Nakagawa H., Hashimoto K., Nakamura R. 2015; From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe (II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front Microbiol 6: [View Article][PubMed]
    [Google Scholar]
  11. Jeon B. Y., Jung I. L., Park D. H. 2012; Enrichment and isolation of CO2-fixing bacteria with electrochemical reducing power as a sole energy source. Journal of Environmental Protection 3: [CrossRef]
    [Google Scholar]
  12. Karp P. D., Paley S. M., Krummenacker M., Latendresse M., Dale J. M., Lee T. J., Kaipa P., Gilham F., Spaulding A., Popescu L. 2010; Pathway Tools version 13.0: Integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11: [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. Le S. Q., Gascuel O. 2008; An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  15. Leary D. H., Hervey W. J., Malanoski A. P., Wang Z., Eddie B. J., Tender G. S., Vora G. J., Tender L. M., Lin B., Strycharz-Glaven S. M. 2015; Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome. Proteomics 15:3486–3496 [View Article][PubMed]
    [Google Scholar]
  16. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst Appl Microbiol 15:593–600 [View Article]
    [Google Scholar]
  17. Marshall C. W., Ross D. E., Fichot E. B., Norman R. S., May H. D. 2012; Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420 [View Article][PubMed]
    [Google Scholar]
  18. Martens J. H., Barg H., Warren M. J., Jahn D. 2002; Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285 [View Article][PubMed]
    [Google Scholar]
  19. Mattick J. S. 2002; Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314 [View Article][PubMed]
    [Google Scholar]
  20. Murray R. G., Stackebrandt E. 1995; Taxonomic note: Implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187 [View Article][PubMed]
    [Google Scholar]
  21. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics : Oxford University Press.;
    [Google Scholar]
  22. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B., Shukla M. 2014; The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  23. PacBio SampleNet– Shared Protocol. 2014; 10 kb to 20 kb template preparation and sequencing with low-input DNA. http://www.pacb.com/wp-content/uploads/2015/09/Shared-282 Protocol-10-kb-to-20-Kb-Template-Preparation-with-Low-Input-DNA.pdf
  24. Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. 2015; CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055 [View Article]
    [Google Scholar]
  25. Pruesse E., Peplies J., Glöckner F. O. 2012; SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  26. Rabaey K., Rozendal R. A. 2010; Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716 [View Article][PubMed]
    [Google Scholar]
  27. Rosenbaum M. A., Franks A. E. 2014; Microbial catalysis in bioelectrochemical technologies: Status quo, challenges and perspectives. Appl Microbiol Biotechnol 98:509–518 [View Article][PubMed]
    [Google Scholar]
  28. Rowe A. R., Chellamuthu P., Lam B., Okamoto A., Nealson K. H. 2014; Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism. Front Microbiol 5:784 [View Article][PubMed]
    [Google Scholar]
  29. Schwartz R., Dayhoff M. 1978; Matrices for detecting distant relationships. Atlas of Protein Sequence and Structure 5:353–358
    [Google Scholar]
  30. Silverman M., Simon M. 1977; Chemotaxis in Escherichia coli: methylation of che gene products. Proc Natl Acad Sci U S A 74:3317–3321[PubMed] [CrossRef]
    [Google Scholar]
  31. Smith M. A., Finel M., Korolik V., Mendz G. L. 2000; Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori . Arch Microbiol 174:1–10 [View Article][PubMed]
    [Google Scholar]
  32. Strycharz-Glaven S. M., Glaven R. H., Wang Z., Zhou J., Vora G. J., Tender L. M. 2013; Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst. Appl Environ Microbiol 79:3933–3942 [View Article][PubMed]
    [Google Scholar]
  33. Summers Z. M., Gralnick J. A., Bond D. R. 2013; Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4:e0042000412 [View Article][PubMed]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  35. Wang Z., Leary D. H., Malanoski A. P., Li R. W., Hervey W. J., Eddie B. J., Tender G. S., Yanosky S. G., Vora G. J., other authors. 2015; A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl Environ Microbiol 81:699–712 [View Article][PubMed]
    [Google Scholar]
  36. ZoBell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001006
Loading
/content/journal/ijsem/10.1099/ijsem.0.001006
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error