1887

Abstract

A thermophilic, Gram-stain-positive, spore-forming bacterium that formed branched vegetative and aerial mycelia was isolated from fallen leaves on geothermal soil. This strain, designated F4, grew at temperatures between 30 and 60 °C; optimum growth temperature was 50 °C, whereas no growth was observed below 28 °C or above 65 °C. The pH range for growth was 4.9–9.5; the pH for optimum growth was 7.0, but no growth was observed at pH below 4.4 or above 10.0. Strain F4 was able to hydrolyse polysaccharides such as cellulose, xylan, chitin and starch. The G+C content in the DNA of strain F4 was 52.5 mol%. The major fatty acid was iso-C and the major menaquinone was MK-9 (H). The cell wall of strain F4 contained glutamic acid, serine, glycine, alanine and ornithine in a molar ratio of 1.0:1.5:1.4:1.8:0.7. The polar lipids of this strain consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, one unknown phospholipid, three unknown glycolipids and two unknown lipids. The cell-wall sugar was mannose. Detailed phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F4belongs to the genus , and that it was related most closely to SK20-1 (98.7 % similarity). DNA–DNA hybridization showed relatedness values of less than 15 % with the type strain of . On the basis of phenotypic features and phylogenetic position, strain F4is considered to represent a novel species, sp. nov. The type strain is F4(=NBRC 111777=BCCM/LMG 29329).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001004
2016-06-10
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2152.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001004&mimeType=html&fmt=ahah

References

  1. Cavaletti L., Monciardini P., Bamonte R., Schumann P., Rohde M., Sosio M., Donadio S.. 2006; New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl Environ Microbiol72:4360–4369 [CrossRef][PubMed]
    [Google Scholar]
  2. Chang Y. J., Land M., Hauser L., Chertkov O., Del Rio T. G., Nolan M., Copeland A., Tice H., Cheng J. F., other authors. 2011; Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). Stand Genomic Sci5:97–111 [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Hall T. A.. 1999; Bioedit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  7. Harper J. J., Davis G. H. G.. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol29:56–58 [CrossRef]
    [Google Scholar]
  8. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  9. King C. E., King G. M.. 2014; Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol64:1244–1251 [CrossRef][PubMed]
    [Google Scholar]
  10. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  12. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  13. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  14. Smibert R. M., Krieg N. L.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Stott M. B., Crowe M. A., Mountain B. W., Smirnova A. V., Hou S., Alam M., Dunfield P. F.. 2008; Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol10:2030–2041 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  17. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526[PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  21. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  22. Vyssotski M., Ryan J., Lagutin K., Wong H., Morgan X., Stott M.. 2012; A novel fatty acid, 12,17-dimethyloctadecanoic acid, from the extremophile Thermogemmatispora sp. (strain T81). Lipids47:601–611 [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  24. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. 2010a; Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost and description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria . Int J Syst Evol Microbiol60:1794–1801 [CrossRef]
    [Google Scholar]
  25. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. 2010b; A lifecycle of branched aerial mycelium- and multiple budding spore-forming bacterium Thermosporothrix hazakensis belonging to the phylum Chloroflexi. J Gen Appl Microbiol56:137–141 [CrossRef]
    [Google Scholar]
  26. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. 2011; Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria . Int J Syst Evol Microbiol61:903–910 [CrossRef][PubMed]
    [Google Scholar]
  27. Yokota A., Tamura T., Nishii T., Hasegawa T.. 1993; Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic Gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol43:52–57 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001004
Loading
/content/journal/ijsem/10.1099/ijsem.0.001004
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error