1887

Abstract

A novel -like, Gram-stain-negative, facultatively anaerobic, rod-shaped bacterium, designated strain JS9, was isolated from Korean fermented seafood, Jeotgal. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain JS9 belonged to the genus in the family The highest 16S rRNA gene sequence similarity of strain JS9 was to KCTC 2579 (98.98 %) and the genomic DNA G+C content is 39.0 mol%. DNA–DNA hybridization values were measured and strain JS9 showed <20.8 % genomic relatedness with closely-related members of the genus . The isolate showed bacterial motility and swarming activity similar to those of pathogenic but distinct from those of other species of the genus . The isolate grows optimally at 30 °C, at pH 7, and in the presence of 2 % (w/v) NaCl. The main respiratory quinones are ubiquinone Q-8 and Q-10, and the major cellular fatty acids are C, summed feature 3 and summed feature 8. The polar lipids comprise phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified amino lipid, two unidentified amino-phospholipids, and three unidentified lipids. Based on phylogenetic, phenotypic, chemotaxonomic and genotypic analyses, strain JS9 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JS9 (=KACC 18404=JCM 30699). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001002
2016-06-10
2021-06-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2158.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001002&mimeType=html&fmt=ahah

References

  1. Armbruster C. E., Mobley H. L. 2012; Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis . Nat Rev Microbiol 10:743–754 [View Article][PubMed]
    [Google Scholar]
  2. Bae J. W., Rhee S. K., Park J. R., Chung W. H., Nam Y. D., Lee I., Kim H., Park Y. H. 2005; Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71:8825–8835 [View Article][PubMed]
    [Google Scholar]
  3. Brenner D. J., Hickman-Brenner F. W., Holmes B., Hawkey P. M., Penner J. L., Grimont P. A., O'Hara C. M. 1995; Replacement of NCTC 4175, the current type strain of Proteus vulgaris, with ATCC 29905. Request for an opinion. Int J Syst Bacteriol 45:870–871 [View Article][PubMed]
    [Google Scholar]
  4. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W. 2008; Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 75:523–530 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D., Jones D. 1981a; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354
    [Google Scholar]
  6. Collins M. D., Jones D. 1981b; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Giammanco G. M., Grimont P. A., Grimont F., Lefevre M., Giammanco G., Pignato S. 2011; Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov. Int J Syst Evol Microbiol 61:1638–1644 [View Article][PubMed]
    [Google Scholar]
  10. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Appl Environ Microbiol 4:770–773[PubMed]
    [Google Scholar]
  11. Hickman F. W., Steigerwalt A. G., Farmer J. J., Brenner D. J, 3rd., Brenner D. J. 1982; Identification of Proteus penneri sp. nov., formerly known as Proteus vulgaris indole negative or as Proteus vulgaris biogroup 1. J Clin Microbiol 15:1097–1102[PubMed]
    [Google Scholar]
  12. Hyun D. W., Kim J. Y., Kim M. S., Shin N. R., Kim H. S., Lee J. Y., Bae J. W. 2015; Actibacter haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter . Int J Syst Evol Microbiol 65:49–55 [View Article][PubMed]
    [Google Scholar]
  13. Hyun D. W., Shin N. R., Kim M. S., Kim P. S., Jung M. J., Kim J. Y., Whon T. W., Bae J. W. 2014; Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata . Int J Syst Evol Microbiol 64:1654–1661 [View Article][PubMed]
    [Google Scholar]
  14. Kaiser P., Geyer R., Surmann P., Fuhrmann H. 2012; LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 88:28–34 [View Article][PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Chun J. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115––175Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  17. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M. 2005; 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales". Appl Environ Microbiol 71:1373–1386 [View Article][PubMed]
    [Google Scholar]
  18. MIDI. 1999; Sherlock Microbial Identification System Operating Manual. Version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  19. O'Hara C. M., Brenner F. W., Steigerwalt A. G., Hill B. C., Holmes B., Grimont P. A., Hawkey P. M., Penner J. L., Miller J. M., Brenner D. J. 2000; Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov. Nom. Rev. and Unnamed Proteus Genomospecies 4, 5 and 6. Int J Syst Evol Microbiol 50:1869–1875 [CrossRef]
    [Google Scholar]
  20. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 79:59–65 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Seo S. U., Kamada N., Muñoz-Planillo R., Kim Y. G., Kim D., Koizumi Y., Hasegawa M., Himpsl S. D., Browne H. P., Núñez G. 2015; Distinct Commensals Induce Interleukin-1β via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury. Immunity 42:744–755 [View Article][PubMed]
    [Google Scholar]
  24. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420 [CrossRef]
    [Google Scholar]
  25. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680[PubMed] [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  28. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580[PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001002
Loading
/content/journal/ijsem/10.1099/ijsem.0.001002
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error