1887

Abstract

A novel thermophilic actinomycete, designated strain T3, was isolated from a soil sample of a sugar cane field. The strain grew at 25–60 °C (optimum 37–50 °C), at pH 6.0–11.0 (optimum 7.0–9.0) and with 0–12.0 % (w/v) NaCl (optimum 0–7 %). The aerial mycelium was white and the vegetative mycelium was colourless to pale yellow. The substrate mycelium fragmented into rod-shaped elements after 4–5 days at 50 °C. The aerial mycelium formed flexuous chains of 5–20 spores per chain; the oval-shaped spores had spiny surfaces and were non-motile. The organism contained -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars consisted of arabinose, galactose and ribose. The cellular fatty acid profile consisted mainly of anteiso-C, iso-C and iso-C. The quinone system was composed predominantly of MK-9(H). The phospholipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylmethylethanolamine and ninhydrin-positive glycophospholipids. The DNA G+C content of strain T3 was 71.3 mol%. The organism showed a combination of morphological and chemotaxonomic properties typical of members of the genus . In the 16S rRNA gene tree of it formed a distinct phyletic line and was related most closely to 216. However, the phenotypic characteristics of strain T3 were significantly different from those of 216 and DNA–DNA hybridization revealed a low level of relatedness (28.6–32.3 %) between them. Based on the phenotypic and phylogenetic data, strain T3 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is T3 ( = DSM 46801 = CGMCC 4.7206).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000976
2016-05-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1990.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000976&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D., Howarth O. W., Grund E., Kroppenstedt R. M.. 1987; Isolation and structural determination of new members of the vitamin K2 series in Nocardia brasiliensis. FEMS Microbiol Lett41:35–39 [CrossRef]
    [Google Scholar]
  3. Embley T. M., Smida J., Stackebrandt E.. 1988; The phylogeny of mycolate-less wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol11:44–52 [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Gause G. F., Preobrazhenskaya T. P., Sveshnikova M. A., Terekhova L. P., Maximova T. S.. 1983; A Guide for the Determination of Actinomycetes. Genera Streptomyces, Streptoverticillium, and Chaina Moscow: Nauka;
    [Google Scholar]
  8. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322 [CrossRef]
    [Google Scholar]
  9. Hayakawa M., Nonomura H.. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol65:501–509 [CrossRef]
    [Google Scholar]
  10. Jones K. L.. 1949; Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol57:141–145[PubMed]
    [Google Scholar]
  11. Kelly K. L.. 1964; Inter-Society Color Council – National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr5:2359–2367 [CrossRef]
    [Google Scholar]
  15. Lacey J., Goodfellow M.. 1975; A novel actinomycete from sugar-cane bagasse: Saccharopolyspora hirsuta gen. et sp. nov. J Gen Microbiol88:75–85 [CrossRef][PubMed]
    [Google Scholar]
  16. Lechevalier M. P., Lechevalier H. A.. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy (Special Publication no. 6) pp227–291Edited by Dietz A., Thayer J.. Arlington, VA: Society for Industrial Microbiology;
    [Google Scholar]
  17. Li W. J., Xu P., Schumann P., Zhang Y.-Q., Pukall R., Xu L.-H., Stackebrandt E., Jiang C.-L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  18. Lu Z., Liu Z., Wang L., Zhang Y., Qi W., Goodfellow M.. 2001; Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp. nov., novel actinomycetes from soil. Int J Syst Evol Microbiol51:319–325 [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. 1980; Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A188:221–233 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  23. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  25. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  27. Waksman S. A.. 1961; The Actinomycetesvol. II Baltimore: Williams &Wilkins;
    [Google Scholar]
  28. Wang C., Xu X. X., Qu Z., Wang H. L., Lin H. P., Xie Q. Y., Ruan J. S., Hong K.. 2011; Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol61:320–324 [CrossRef][PubMed]
    [Google Scholar]
  29. Warwick S., Bowen T., McVeigh H., Embley T. M.. 1994; A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol44:293–299 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  31. Williams S. T., Goodfellow M., Alderson G., Wellington E.M.H., Sneath P.H.A., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813[PubMed]
    [Google Scholar]
  32. Zhi X. Y., Li W. J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000976
Loading
/content/journal/ijsem/10.1099/ijsem.0.000976
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error