1887

Abstract

A moderately halophilic, aerobic bacterium, strain BZ-SZ-XJ27, belonging to the genus , was isolated from a saline-alkaline lake in the Xinjiang Uyghur Autonomous Region of China. Phylogenetic analysis based on 16S rRNA gene sequences and a multilocus sequence analysis using the 16S rRNA, and genes demonstrated that strain BZ-SZ-XJ27 represents a member of the genus . On the basis of 16S rRNA gene sequence similarity, the closest relatives were 5AG, 5CR, XK1 and ALO Sharm, with similarities of 96.2–97.2 %. DNA–DNA hybridization with CGMCC 1.6981 (the nearest phylogenetic neighbour) and DSM 15293 (the highest 16S rRNA gene sequence similarity) showed relatedness values of 53 and 38 %, respectively, demonstrating the separateness of the three taxa. The bacterium stained Gram-negative and the cells were motile and rod-shaped. The strain formed creamy-white colonies and grew under optimal conditions of 1.42 M Na (range 0.22–4.32 M Na), pH 8.0–8.5 (range pH 6.0–10.0) and 39 °C (range 4–43 °C). The dominant fatty acids were summed feature 8 (Cω7/Cω6; 36.6 %), C (25.9 %) and summed feature 3 (Cω7/Cω6; 21.2 %). The dominant polar lipids were two unknown phospholipids, phosphatidylethanolamine and phosphatidylglycerol, and the main respiratory quinones were ubiquinone 9 (Q-9; 89 %) and ubiquinone 8 (Q-8; 10 %). The genomic DNA G+C content was 61.7 ± 0.8 mol% ( ). On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain BZ-SZ-XJ27 is proposed to represent a novel species, sp. nov., within the genus of the family . The type strain is BZ-SZ-XJ27 ( = JCM 30202 = CGMCC 1.12917).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000975
2016-05-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1962.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000975&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A.. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  2. Arias S., del Moral A., Ferrer M. R., Tallon R., Quesada E., Béjar V.. 2003; Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas Maura, with a novel composition and interesting properties for biotechnology. Extremophiles7:319–326 [CrossRef][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A..editors 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria,, 3rd edn. London: Cambridge University Press;
    [Google Scholar]
  4. Coronado M., Vargas C., Hofemeister J., Ventosa A., Nieto J. J.. 2000; Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett183:67–71[PubMed]
    [Google Scholar]
  5. de la Haba R. R., Márquez M. C., Papke R. T., Ventosa A.. 2012; Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol62:520–538 [CrossRef][PubMed]
    [Google Scholar]
  6. Doetsch R. N.. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp21–33Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Gerceker D., Karasartova D., Elyürek E., Barkar S., Kıyan M., Özsan T. M., Calgin M. K., Sahin F.. 2009; A new, simple, rapid test for detection of DNase activity of microorganisms: DNase tube test. J Gen Appl Microbiol55:291–294 [CrossRef][PubMed]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..editors 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V.. 2009; Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol59:1290–1296 [CrossRef][PubMed]
    [Google Scholar]
  11. Infante-Dominguez C., Lawson P. A., Johnson C. N., Sánchez-Porro C., Ventosa A.. 2015; Fodinicurvata halophila sp. nov., a moderately halophilic bacterium from a marine saltern. Int J Syst Evol Microbiol65:766–771 [CrossRef][PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. [CrossRef] In Mammalian Protein Metabolismvol. 3 pp21–132Edited by Munro H. N.. New York: Academic Press;
    [Google Scholar]
  13. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  14. Lányi B.. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol19:1–67 [CrossRef]
    [Google Scholar]
  15. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; Clustal W and Clustal X version 2. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Li H. B., Zhang L. P., Chen S. F.. 2008; Halomonas korlensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil. Int J Syst Evol Microbiol58:2582–2588 [CrossRef][PubMed]
    [Google Scholar]
  17. Lim J. M., Yoon J. H., Lee J. C., Jeon C. O., Park D. J., Sung C., Kim C. J.. 2004; Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol54:2037–2042 [CrossRef][PubMed]
    [Google Scholar]
  18. Llamas I., Béjar V., Martínez-Checa F., Martínez-Cánovas M. J., Molina I., Quesada E.. 2011; Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int J Syst Evol Microbiol61:2508–2514 [CrossRef][PubMed]
    [Google Scholar]
  19. Margesin R., Schinner F.. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles5:73–83 [CrossRef][PubMed]
    [Google Scholar]
  20. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V.. 2004; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol54:733–737 [CrossRef][PubMed]
    [Google Scholar]
  21. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  23. Mormile M. R., Romine M. F., Garcia M. T., Ventosa A., Bailey T. J., Peyton B. M.. 1999; Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol22:551–558 [CrossRef][PubMed]
    [Google Scholar]
  24. Murray R.G.E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp21–41Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Nieto J. J., Vargas C., Ventosa A.. 2000; Osmoprotection mechanisms in the moderately halophilic bacterium Halomonas elongata. In Recent Research Developments in Microbiologyvol. 4 pp43–54Edited by Pandalai S. G.. Trivandrum, India: Research Signpost;
    [Google Scholar]
  26. Patel G. B., Khan A. W., Agnew B. J., Colvin J. R.. 1980; Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. Int J Syst Bacteriol30:179–185 [CrossRef]
    [Google Scholar]
  27. Quillaguamán J., Hatti-Kaul R., Mattiasson B., Alvarez M. T., Delgado O.. 2004; Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol54:721–725 [CrossRef][PubMed]
    [Google Scholar]
  28. Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A.. 2005; Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol28:610–618 [CrossRef][PubMed]
    [Google Scholar]
  29. Romano I., Lama L., Orlando P., Nicolaus B., Giordano A., Gambacorta A.. 2007; Halomonas sinaiensis sp. nov., a novel halophilic bacterium isolated from a salt lake inside Ras Muhammad Park, Egypt. Extremophiles11:789–796 [CrossRef][PubMed]
    [Google Scholar]
  30. Rzhetsky A., Nei M.. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol9:945–967
    [Google Scholar]
  31. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  32. Sánchez-Porro C., Martín S., Mellado E., Ventosa A.. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol94:295–300 [CrossRef][PubMed]
    [Google Scholar]
  33. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note no. 101 Newark, DE: MIDI;
    [Google Scholar]
  34. Simon-Colin C., Raguénès G., Cozien J., Guezennec J. G.. 2008; Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol104:1425–1432 [CrossRef][PubMed]
    [Google Scholar]
  35. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  36. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  38. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  39. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  40. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. [CrossRef] In Methods for General and Molecular Microbiology, 3rd edn. pp330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Ventosa A., Nieto J. J., Oren A.. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev62:504–544[PubMed]
    [Google Scholar]
  42. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E.. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol30:485–495 [CrossRef]
    [Google Scholar]
  43. Wiegel J.. 1998; Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles2:257–267 [CrossRef][PubMed]
    [Google Scholar]
  44. Yoon J.-H., Lee K.-C., Kho Y.-H., Kang K.-H., Kim C.-J., Park Y.-H.. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol52:123–130 [CrossRef][PubMed]
    [Google Scholar]
  45. Zakrzewska-Czerwińska J., Mordarski M., Goodfellow M.. 1988; DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol134:2807–2813[PubMed]
    [Google Scholar]
  46. Zhao B., Chen S.. 2012; Alkalitalea saponilacus gen. nov., sp. nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake. Int J Syst Evol Microbiol62:2618–2623 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhao B., Wang H., Li R., Mao X.. 2010; Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol60:1125–1129 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhao B., Yan Y., Chen S.. 2014; How could haloalkaliphilic microorganisms contribute to biotechnology?. Can J Microbiol60:717–727 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000975
Loading
/content/journal/ijsem/10.1099/ijsem.0.000975
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error