1887

Abstract

An actinomycete strain, RY45-3, isolated from a peat swamp forest soil in Rayong Province, Thailand, was characterized using a polyphasic approach. The strain belonged to the genus on the basis of morphological, physiological, biochemical and chemotaxonomic properties. Cell-wall peptidoglycan contained -diaminopimelic acid. The -acyl group of muramic acid in the cell wall was glycolyl type. The diagnostic sugars in whole-cell hydrolysates were galactose and arabinose. MK-8 (Hω-cycl) was the major menaquinone. The major fatty acids were C and Cω9. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The genomic DNA G+C content was 71 mol%. On the basis of 16S rRNA gene sequence similarity analysis, strain RY45-3 was closely related to JCM 12861 (98.9 %), JCM 6044 (98.8 %) and JCM 9894 (98.6 %). The strain showed low levels of DNA–DNA relatedness with JCM 12861, JCM 6044 and JCM 9894 (range from 3.6 to 55.3 %). On the basis of the phenotypic characteristics and the results mentioned, this strain could be differentiated from closely related type strains and represents a novel species of the genus , for which the name sp. nov. (type strain RY45-3 = JCM 19832 = TISTR 2213 = PCU 334) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000971
2016-05-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1950.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000971&mimeType=html&fmt=ahah

References

  1. Arai T.. 1975; Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes;
    [Google Scholar]
  2. CLSI 2003; Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard M24-A Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst14:313–333 [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Goodfellow M.. 2012; Family IV. Nocardiaceae (Castellani & Chalmers 1919) emend. Zhi, Li and Stackebrandt 2009. In Bergey's Manual of Systematic Bacteriology, The Actinobacteria, Part B, 2nd edn.vol. 5 pp376–496Edited by Goodfellow M., Kämpfer P., Busse H-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. NewYork: Springer; [CrossRef]
    [Google Scholar]
  9. Goodfellow M., Lechevalier M. P.. 1989; Genus Nocardia. Trevisan 1889, 9AL . In Bergey's Manual of Systematic Bacteriologyvol. 2 pp1458–1471Edited by Williams S. T., Sharpe M. E., Holt J. G.. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  10. Gordon R. E., Mihm J. M.. 1957; A comparative study of some strains received as nocardiae. J Bacteriol73:15–27[PubMed]
    [Google Scholar]
  11. Gordon R. E., Mihm J. M.. 1962; The type species of the genus Nocardia . J Gen Microbiol27:1–10 [CrossRef][PubMed]
    [Google Scholar]
  12. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C.H.N.. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol24:54–63 [CrossRef]
    [Google Scholar]
  13. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  14. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322[CrossRef]
    [Google Scholar]
  15. Hayakawa M., Nonomura H.. 1987; Humic acid vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol65:501–509 [CrossRef]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  18. Lechevalier M. P., Lechevalier H. A.. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol20:435–443 [CrossRef]
    [Google Scholar]
  19. Lechevalier M. P., DeBiévre C., Lechevalier H. A.. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol5:249–260 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol27:104–117 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid uinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  22. Niemhom N., Suriyachadkun C., Tamura T., Thawai C.. 2013a; Asanoa siamensis sp. nov., isolated from soil from a temperate peat swamp forest. Int J Syst Evol Microbiol63:66–71 [CrossRef][PubMed]
    [Google Scholar]
  23. Niemhom N., Suriyachadkun C., Tamura T., Thawai C.. 2013b; Acrocarpospora phusangensis sp. nov., isolated from a temperate peat swamp forest soil. Int J Syst Evol Microbiol63:2174–2179 [CrossRef][PubMed]
    [Google Scholar]
  24. Phongsopitanun W., Tanasupawat S., Suwanborirux K., Ohkuma M., Kudo T.. 2015; Actinomadura rayongensis sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol65:890–895 [CrossRef][PubMed]
    [Google Scholar]
  25. Posa M.R.C., Wijedasa S., Corlett T.. 2011; Biodiversity and conservation of tropical peat swamp forests. Bioscience61:49–57 [CrossRef]
    [Google Scholar]
  26. Raeder U., Broda P.. 1985; Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol1:17–20 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  28. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  29. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  30. Songsumanus A., Tanasupawat S., Thawai C., Suwanborirux K., Kudo T.. 2011; Micromonospora humi sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol61:1176–1181 [CrossRef][PubMed]
    [Google Scholar]
  31. Sorokin D. Yu.. 2005; Is there a limit for high-pH life?. Int J Syst Evol Microbiol55:1405–1406 [CrossRef][PubMed]
    [Google Scholar]
  32. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  33. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  34. Suriyachadkun C., Chunhametha S., Thawai C., Tamura T., Potacharoen W., Kirtikara K., Sanglier J. J.. 2009; Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol59:992–997 [CrossRef][PubMed]
    [Google Scholar]
  35. Takeda K., Kang Y., Yazawa K., Gonoi T., Mikami Y.. 2010; Phylogenetic studies of Nocardia species based on gyrB gene analyses. J Med Microbiol59:165–171 [CrossRef][PubMed]
    [Google Scholar]
  36. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  38. Taylor H. D., Knoche L., Grauville W. C.. editors 1958; Color Harmony Manual, 4th edn. Chicago, IL: Container Corporation of America;
    [Google Scholar]
  39. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Kudo T.. 2004; Micromonospora aurantionigra sp. nov., isolated from a peat swamp forest in Thailand. Actinomycetologica18:8–14 [CrossRef]
    [Google Scholar]
  40. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Suzuki K., Kudo T.. 2005a; Micromonospora eburnea sp. nov., isolated from a Thai peat swamp forest. Int J Syst Evol Microbiol55:417–422 [CrossRef][PubMed]
    [Google Scholar]
  41. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Kudo T.. 2005b; Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. J Gen Appl Microbiol51:229–234 [CrossRef][PubMed]
    [Google Scholar]
  42. Thawai C., Tanasupawat S., Itoh T., Kudo T.. 2006; Actinocatenispora thailandica gen. nov., sp. nov., a new member of the family Micromonosporaceae . Int J Syst Evol Microbiol56:1789–1794 [CrossRef][PubMed]
    [Google Scholar]
  43. Tomiyasu I.. 1982; Mycolic acid composition and thermally adaptative changes in Nocardia asteroids . J Bacteriol151:828–837
    [Google Scholar]
  44. Uchida K., Aida K.. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol30:131–134[CrossRef]
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  46. Williams S. T., Goodfellow M., Alderson G., Wellington E.M.H., Sneath P.H.A., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813[PubMed]
    [Google Scholar]
  47. Yamada Y., Katsura K., Kawasaki H., Widyastuti Y., Saono S., Seki T., Uchimura T., Komagata K.. 2000; Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria . Int J Syst Evol Microbiol50:823–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000971
Loading
/content/journal/ijsem/10.1099/ijsem.0.000971
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error