1887

Abstract

A novel bacterial strain, Back-11, was isolated from sediment soil of a crater lake, Baekrokdam, Hallasan, Jeju, Republic of Korea. Cells of strain Back-11 were Gram-stain-positive, motile, endospore-forming, rod-shaped and oxidase- and catalase-positive. It contained anteiso-C as the major fatty acid, menaquinone-7 (MK-7) as the predominant isoprenoid quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified aminophospholipids as the main polar lipids, and -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 45.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain Back-11 was most closely related to THMBG22 (95.5 % similarity) and fell into a clade in the genus . On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain Back-11 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is Back-11 ( = KCTC 33723 = CECT 8890).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000968
2016-05-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1937.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000968&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D.. 1993–1994; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek64:253–260 [CrossRef][PubMed]
    [Google Scholar]
  2. Bower V. E., Bates R. G.. 1955; pH values of the Clark and Lubs buffer solutions at 25 °C. J Res Natl Bur Stand55:197–200 [CrossRef]
    [Google Scholar]
  3. Cao Y., Chen F., Li Y., Wei S., Wang G.. 2015; Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol65:165–170 [CrossRef][PubMed]
    [Google Scholar]
  4. Euzéby J. P.. 1997; List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Huang X.-F., Wang F.-Z., Zhang W., Li J., Ling J., Yang J., Dong J.-D., Tian X.-P.. 2014; Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek106:1089–1095 [CrossRef][PubMed]
    [Google Scholar]
  9. Jiang B., Zhao X., Liu J., Fu L., Yang C., Hu X.. 2015; Paenibacillus shenyangensis sp. nov., a bioflocculant-producing species isolated from soil under a peach tree. Int J Syst Evol Microbiol65:220–224 [CrossRef][PubMed]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. [CrossRef] In Mammalian Protein Metabolismvol. 3 pp21–132Edited by Munro H. N.. New York: Academic Press;
    [Google Scholar]
  11. Kittiwongwattana C., Thawai C.. 2015; Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol65:107–112 [CrossRef][PubMed]
    [Google Scholar]
  12. Lányí B.. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol19:1–67 [CrossRef]
    [Google Scholar]
  13. Lee K. C., Kim K. K., Eom M. K., Kim M. J., Lee J.-S.. 2011; Fontibacillus panacisegetis sp. nov., a isolated from soil of a ginseng field. Int J Syst Evol Microbiol61:369–374 [CrossRef][PubMed]
    [Google Scholar]
  14. Lee J.-J., Yang D.-H., Ko Y.-S., Park J.-K., Im E.-Y., Kim J.-Y., Kwon K.-Y., Lee Y.-J., Kim H.-M., Kim M. K.. 2014; Paenibacillus swuensis sp. nov., a bacterium isolated from soil. J Microbiol52:106–110 [CrossRef][PubMed]
    [Google Scholar]
  15. Li Q.-Q., Zhou X.-K., Dang L.-Z., Cheng J., Hozzein W. N., Liu M.-J., Hu Q., Li W.-J., Duan Y.-Q.. 2014; Paenibacillus nicotianae sp. nov., isolated from a tobacco sample. Antonie van Leeuwenhoek106:1199–1205 [CrossRef][PubMed]
    [Google Scholar]
  16. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  17. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol27:104–117 [CrossRef]
    [Google Scholar]
  18. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y.. 2011; Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol61:2753–2757 [CrossRef][PubMed]
    [Google Scholar]
  19. Nakamura L. K.. 1987; Bacillus and polymyxa (Prazmowski) Mace 1889 deoxyribonucleic acid relatedness and base composition. Int J Syst Bacteriol37:391–397 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  22. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  23. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  24. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H.. 1996; Isoprenoid quinone profiles of Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol6:68–69
    [Google Scholar]
  25. Skerman V.B.D.. 1967; A Guide to the Identfication of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  26. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Ueda J., Yamamoto S., Kurosawa N.. 2013; Paenibacillus thermoaerophilus sp. nov., a moderately thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol63:3330–3335 [CrossRef][PubMed]
    [Google Scholar]
  29. Wu Y. F., Wu Q. L., Liu S. J.. 2013; Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol63:3652–3658 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000968
Loading
/content/journal/ijsem/10.1099/ijsem.0.000968
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error