1887

Abstract

A novel bacterial strain, Back-11, was isolated from sediment soil of a crater lake, Baekrokdam, Hallasan, Jeju, Republic of Korea. Cells of strain Back-11 were Gram-stain-positive, motile, endospore-forming, rod-shaped and oxidase- and catalase-positive. It contained anteiso-C as the major fatty acid, menaquinone-7 (MK-7) as the predominant isoprenoid quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified aminophospholipids as the main polar lipids, and -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 45.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain Back-11 was most closely related to THMBG22 (95.5 % similarity) and fell into a clade in the genus . On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain Back-11 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is Back-11 ( = KCTC 33723 = CECT 8890).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000968
2016-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1937.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000968&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D.. ( 1993–1994;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bower V. E., Bates R. G.. ( 1955;). pH values of the Clark and Lubs buffer solutions at 25 °C. J Res Natl Bur Stand 55: 197–200 [CrossRef].
    [Google Scholar]
  3. Cao Y., Chen F., Li Y., Wei S., Wang G.. ( 2015;). Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 65: 165–170 [CrossRef] [PubMed].
    [Google Scholar]
  4. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47: 590–592 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  8. Huang X.-F., Wang F.-Z., Zhang W., Li J., Ling J., Yang J., Dong J.-D., Tian X.-P.. ( 2014;). Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek 106: 1089–1095 [CrossRef] [PubMed].
    [Google Scholar]
  9. Jiang B., Zhao X., Liu J., Fu L., Yang C., Hu X.. ( 2015;). Paenibacillus shenyangensis sp. nov., a bioflocculant-producing species isolated from soil under a peach tree. Int J Syst Evol Microbiol 65: 220–224 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. [CrossRef] In Mammalian Protein Metabolismvol. 3, pp. 21–132. Edited by Munro H. N.. New York: Academic Press;.
    [Google Scholar]
  11. Kittiwongwattana C., Thawai C.. ( 2015;). Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 65: 107–112 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  13. Lee K. C., Kim K. K., Eom M. K., Kim M. J., Lee J.-S.. ( 2011;). Fontibacillus panacisegetis sp. nov., a isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61: 369–374 [CrossRef] [PubMed].
    [Google Scholar]
  14. Lee J.-J., Yang D.-H., Ko Y.-S., Park J.-K., Im E.-Y., Kim J.-Y., Kwon K.-Y., Lee Y.-J., Kim H.-M., Kim M. K.. ( 2014;). Paenibacillus swuensis sp. nov., a bacterium isolated from soil. J Microbiol 52: 106–110 [CrossRef] [PubMed].
    [Google Scholar]
  15. Li Q.-Q., Zhou X.-K., Dang L.-Z., Cheng J., Hozzein W. N., Liu M.-J., Hu Q., Li W.-J., Duan Y.-Q.. ( 2014;). Paenibacillus nicotianae sp. nov., isolated from a tobacco sample. Antonie van Leeuwenhoek 106: 1199–1205 [CrossRef] [PubMed].
    [Google Scholar]
  16. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  17. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  18. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y.. ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 2753–2757 [CrossRef] [PubMed].
    [Google Scholar]
  19. Nakamura L. K.. ( 1987;). Bacillus and polymyxa (Prazmowski) Mace 1889 deoxyribonucleic acid relatedness and base composition. Int J Syst Bacteriol 37: 391–397 [CrossRef].
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  22. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  23. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  24. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H.. ( 1996;). Isoprenoid quinone profiles of Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 6: 68–69.
    [Google Scholar]
  25. Skerman V.B.D.. ( 1967;). A Guide to the Identfication of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;.
    [Google Scholar]
  26. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ueda J., Yamamoto S., Kurosawa N.. ( 2013;). Paenibacillus thermoaerophilus sp. nov., a moderately thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 63: 3330–3335 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wu Y. F., Wu Q. L., Liu S. J.. ( 2013;). Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol 63: 3652–3658 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000968
Loading
/content/journal/ijsem/10.1099/ijsem.0.000968
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error