1887

Abstract

A novel actinobacterium designated strain MWE-A11 was isolated from the root of wild (mugwort). The isolate was aerobic, Gram-stain-positive and short rod-shaped, and the colonies were yellow and circular with entire margin. Strain MWE-A11 grew at 15–37 °C and pH 6.0–8.0. The predominant isoprenoid quinones were MK-11 and MK-10. The predominant fatty acids were anteiso-C and iso-C, and the DNA G+C content was 68.8 mol%. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The peptidoglycan contained 2,4-diaminobutyric acid as the diagnostic diamino acid, and the acyl type was glycolyl. Phylogenetic analyses based on 16S rRNA gene sequence comparisons indicated that strain MWE-A11 was affiliated with the family , and was most closely related to the type strains of (96.4 % 16S rRNA gene sequence similarity), (96.3 %), (96.3 %), (96.2 %), subsp (96.1 %), (96.0 %) and (96.0 %). However, the combination of chemotaxonomic properties clearly distinguished strain MWE-A11 from the related taxa at genus level. Accordingly, gen. nov., sp. nov. is proposed to accommodate a new member of the family . The type strain of the type species is MWE-A11 ( = JCM 19371 = KCTC 29232).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000948
2016-04-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1823.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000948&mimeType=html&fmt=ahah

References

  1. An S.-Y., Xiao T., Yokota A.. 2008; Schumannella luteola gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. J Gen Appl Microbiol54:253–258 [CrossRef][PubMed]
    [Google Scholar]
  2. Behrendt U., Schumann P., Hamada M., Suzuki K., Spröer C., Ulrich A.. 2011; Reclassification of Leifsonia ginsengi (Qiu 2007) as Herbiconiux ginsengi gen. nov., comb. nov. and description of Herbiconiux solani sp. nov., an actinobacterium associated with the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol61:1039–1047 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M.-D., Jones D., Schofield G.-M.. 1982; Reclassification of ‘Corynebacterium haemolyticum’ (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb. nov.. J Gen Microbiol128:1279–1281[PubMed]
    [Google Scholar]
  4. Evtushenko L. I.. 2012; Family Xi. Microbacteriaceae Park, Suzuki, Yim, Lee, Kim, Yoon, Kim, Kho, Goodfellow and Komagata 1995, 418 (Effective Publication: Park, Suzuki, Yim, Lee, Kim, Yoon, Kim, Kho, Goodfellow and Komagata 1993, 312) emend. Rainey, Ward-Rainey and Stackebrandt 1997, 485. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 5 pp807–994Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer;
    [Google Scholar]
  5. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  8. Hamada M., Komukai C., Tamura T., Evtushenko L.-I., Vinokurova N.-G., Suzuki K.. 2012; Description of Herbiconiux flava sp. nov. and emended description of the genus Herbiconiux. Int J Syst Evol Microbiol62:795–799 [CrossRef][PubMed]
    [Google Scholar]
  9. Han S.-K., Nedashkovskaya O.-I., Mikhailov V.-V., Kim S.-B., Bae K.-S.. 2003; Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol53:2061–2066 [CrossRef][PubMed]
    [Google Scholar]
  10. Harper J. J., Davis G. H. G.. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol29:56–58 [CrossRef]
    [Google Scholar]
  11. Jang Y.-H., Kim S.-J., Tamura T., Hamada M., Weon H.-Y., Suzuki K., Kwon S.-W., Kim W.-G.. 2013; Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov.. Int J Syst Evol Microbiol63:1403–1410 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim B.-C., Park D.-S., Kim H., Oh H.-W., Lee K.-H., Shin K.-S., Bae K.-S.. 2012a; Herbiconiux moechotypicola sp. nov., a xylanolytic bacterium isolated from the gut of hairy long-horned toad beetles, Moechotypa diphysis (Pascoe). Int J Syst Evol Microbiol62:90–95 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.-S., Lee J.-H., other authors. 2012b; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim S.-J., Moon J.-Y., Hamada M., Tamura T., Weon H.-Y., Suzuki K., Kwon S.-W.. 2013; Rudaibacter terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol63:4052–4057 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim T.-S., Han J.-H., Joung Y., Kim S.-B.. 2014; Conyzicola lurida gen. nov., sp. nov., isolated from the root of Conyza canadensis. Int J Syst Evol Microbiol64:2753–2757 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim E.-K., Hoang V.-A., Kim Y.-J., Nguyen N.-L., Sukweenadhi J., Kang J.-P., Yang D.-C.. 2015; Humibacter ginsengiterrae sp. nov., and Humibacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol65:2734–2740 [CrossRef][PubMed]
    [Google Scholar]
  17. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  18. Lee S. D.. 2013; Humibacter antri sp. nov., an actinobacterium isolated from a natural cave, and emended description of the genus Humibacter. Int J Syst Evol Microbiol63:4315–4319 [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  20. Park Y.-H., Suzuki K., Yim D.-G., Lee K.-C., Kim E., Yoon J., Kim S., Kho Y.-H., Goodfellow M., Komagata K.. 1993; Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek64:307–313 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  23. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  24. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  25. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Uchida K., Kudo T., Suzuki K.-I., Nakase T.. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  27. Vaz-Moreira I., Nobre M. F., Ferreira A. C., Schumann P., Nunes O. C., Manaia C. M.. 2008; Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol58:1014–1018 [CrossRef][PubMed]
    [Google Scholar]
  28. Wang H.-F., Zhang Y.-G., Chen J.-Y., Guo J.-W., Li L., Hozzein W. N., Zhang Y.-M., Wadaan M. A., Li W.-J.. 2015a; Frigoribacterium endophyticum sp. nov., an endophytic actinobacterium isolated from the root of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol65:1207–1212 [CrossRef][PubMed]
    [Google Scholar]
  29. Wang H.-F., Zhang Y.-G., Cheng J., Hozzein W. N., Liu W.-H., Li L., Chen J.-Y., Guo J.-W., Zhang Y.-M., Li W.-J.. 2015b; Labedella endophytica sp. nov., a novel endophytic actinobacterium isolated from stem of Anabasis elatior (C. A. Mey.) Schischk. Antonie van Leeuwenhoek107:95–102 [CrossRef][PubMed]
    [Google Scholar]
  30. Wang H.-F., Zhang Y.-G., Li L., Liu W.-H., Hozzein W. N., Chen J.-Y., Guo J.-W., Zhang Y.-M., Li W.-J.. 2015c; Okibacterium endophyticum sp. nov., a novel endophytic actinobacterium isolated from roots of Salsola affinis C.A. Mey. Antonie van Leeuwenhoek107:835–843 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhi X. Y., Li W.-J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000948
Loading
/content/journal/ijsem/10.1099/ijsem.0.000948
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error