1887

Abstract

A Gram-stain-negative, motile, polyhydroxybutyrate-accumulating, aerobic, S-shaped bacterium, designated B3, was isolated from the wastewater of a pickle-processing factory. 16S rRNA gene sequence similarity analysis showed that it was most closely related to the type strain, (96.6 % similarity). Strain B3 was able to grow at 4–40 °C (optimum 32–37 °C), pH 5.5–9.0 (optimum 6.5–7.5) and with 0.5–8 % (w/v) NaCl present (optimum 1–2 %, w/v). Chemotaxonomic analysis showed that the respiratory quinone was ubiquinone Q-10, the major fatty acids included C, Cω7 and Cω7 and/or iso-C2-OH. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, aminophospholipid and three uncharacterized phospholipids. The genomic DNA G+C content of strain B3 was 42.3 mol%. The DNA–DNA relatedness value between B3 and DSM 9263 was 23.9 %. On the basis of the phenotypic, chemotaxonomic and genotypic characteristics of strain B3, it represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is B3 ( = KCTC 42652 = CGMCC 1.15254). Emended descriptions of and the genus are also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000946
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1807.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000946&mimeType=html&fmt=ahah

References

  1. Cui H.-L., Gao X., Yang X., Xu X.-W.. 2011; Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol61:1617–1621 [CrossRef][PubMed]
    [Google Scholar]
  2. Farmer J. J. III, Hickman-Brenner F. W.. 2006; The genera Vibrio and Photobacterium. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn.vol. 6 pp508–563Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  5. Huo Y. Y., Xu X. W., Cui H. L., Wu M.. 2010; Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. Int J Syst Evol Microbiol60:1383–1386 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  7. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  8. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  9. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  10. Mesbah M., Whitman W. B.. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  11. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  12. Nokhal T. H., Schlegel H. G.. 1983; Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  14. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T.. 2002; Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol52:739–747[PubMed]
    [Google Scholar]
  15. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  16. Terasaki Y.. 1973; Studies on the genus Spirillum Ehrenberg. II. Comments on type and reference strains of Spirillum and description of new species and subspecies. Bull Suzugamine Women's Coll Nat Sci17:1–71
    [Google Scholar]
  17. Terasaki Y.. 1979; Transfer of five species and two subspecies of Spirillum to other genera (Aquaspirillum and Oceanospirillum), with emended descriptions of the species and subspecies. Int J Syst Bacteriol29:130–144 [CrossRef]
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  19. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  20. Xu X. W., Wu Y. H., Zhou Z., Wang C. S., Zhou Y. G., Zhang H. B., Wang Y., Wu M.. 2007; Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  21. Zhang X. Q., Ying Y., Ye Y., Xu X. W., Zhu X. F., Wu M.. 2010; Thermus arciformis sp. nov., a thermophilic species from a geothermal area. Int J Syst Evol Microbiol60:834–839 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhu X.-F., Jia X.-M., Zhang X.-Q., Wu Y.-H., Chen Z.-Y.. 2011; Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press (English translation);
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000946
Loading
/content/journal/ijsem/10.1099/ijsem.0.000946
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error