1887

Abstract

A strictly anaerobic, mesophilic, syntrophic, alkane-degrading strain, L81, was isolated from a biofilm sampled from a black smoker chimney at the Loki's Castle vent field. Cells were straight, rod-shaped, Gram-positive-staining and motile. Growth was observed at pH 6.2–9.5, 14–42 °C and 0.5–6 % (w/w) NaCl, with optima at pH 7.0–8.2, 37 °C and 3 % (w/w) NaCl. Proteinaceous substrates, sugars, organic acids and hydrocarbons were utilized for growth. Thiosulfate was used as an external electron acceptor during growth on crude oil. Strain L81 was capable of syntrophic hydrocarbon degradation when co-cultured with a methanogenic archaeon, designated strain LG6, isolated from the same enrichment. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain L81 is affiliated with the family , and is most closely related to the type strains of (92 % sequence similarity) and (90 %). The major cellular fatty acids of strain L81 were C, anteiso-C and C, and the profile was distinct from those of the species of the genus . The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids, four unidentified glycolipids and two unidentified phosphoglycolipids. The G+C content of genomic DNA was determined to be 31.7 mol%. Based on our phenotypic, phylogenetic and chemotaxonomic results, strain L81 is considered to represent a novel species of a new genus of the family , for which we propose the name gen. nov., sp. nov. The type strain of is L81 ( = DSM 29592 = JCM 30920). We also provide emended descriptions of and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000934
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1724.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000934&mimeType=html&fmt=ahah

References

  1. Adams M. M., Hoarfrost A. L., Bose A., Joye S. B., Girguis P. R.. 2013; Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front Microbiol4:110 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  3. Bachmann R., Johnson A., Edyvean R. G.. 2014; Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation86:225–237 [CrossRef]
    [Google Scholar]
  4. Barman Skaare B., Wilkes H., Vieth A., Rein E., Barth T.. 2007; Alteration of crude oils from the Troll area by biodegradation: analysis of oil and water samples. Org Geochem38:1865–1883 [CrossRef]
    [Google Scholar]
  5. Bazylinski D. A., Wirsen C. O., Jannasch H. W.. 1989; Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl Environ Microbiol55:2832–2836[PubMed]
    [Google Scholar]
  6. Berdugo-Clavijo C., Gieg L. M.. 2014; Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol5:197 [CrossRef][PubMed]
    [Google Scholar]
  7. Bødtker G., Hvidsten I. V., Barth T., Torsvik T.. 2009; Hydrocarbon degradation by Dietzia sp., A14101 isolated from an oil reservoir model column. Antonie van Leeuwenhoek96:459–469 [CrossRef][PubMed]
    [Google Scholar]
  8. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Lebedinsky A. V., Chernyh N. A., Nazina T. N., Ivoilov V. S., Belyaev S. S., Boulygina E. S., Lysov Y. P., other authors. 2003; Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol69:6143–6151 [CrossRef][PubMed]
    [Google Scholar]
  9. Callaghan A. V., Wawrik B., Ní Chadhain S. M., Young L. Y., Zylstra G. J.. 2008; Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun366:142–148 [CrossRef][PubMed]
    [Google Scholar]
  10. Callaghan A. V., Morris B. E., Pereira I. A., McInerney M. J., Austin R. N., Groves J. T., Kukor J. J., Suflita J. M., Young L. Y.. 2012; & other authors The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol14:101–113 [CrossRef][PubMed]
    [Google Scholar]
  11. Cheng L., Shi S., Li Q., Chen J., Zhang H., Lu Y.. 2014; Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One9:e113253 [CrossRef][PubMed]
    [Google Scholar]
  12. Dahle H., Birkeland N.-K.K.. 2006; Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol56:1539–1545 [CrossRef][PubMed]
    [Google Scholar]
  13. Dahle H., Økland I., Thorseth I. H., Pederesen R. B., Steen I. H.. 2015; Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME J9:1593–1606 [CrossRef][PubMed]
    [Google Scholar]
  14. Davidova I. A., Duncan K. E., Choi O. K., Suflita J. M.. 2006; Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol56:2737–2742 [CrossRef][PubMed]
    [Google Scholar]
  15. Dienes L., Weinberger H. J.. 1951; The L forms of bacteria. Bacteriol Rev15:245–288[PubMed]
    [Google Scholar]
  16. Dolfing J., Larter S. R., Head I. M.. 2008; Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J2:442–452 [CrossRef][PubMed]
    [Google Scholar]
  17. Dubinsky E. A., Conrad M. E., Chakraborty R., Bill M., Borglin S. E., Hollibaugh J. T., Mason O. U., Piceno Y. M., Reid F. C., other authors. 2013; Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol47:10860–10867 [CrossRef][PubMed]
    [Google Scholar]
  18. Gieg L. M., Duncan K. E., Suflita J. M.. 2008; Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol74:3022–3029 [CrossRef][PubMed]
    [Google Scholar]
  19. Giovannoni S. J.. 1991; The Polymerase Chain Reaction pp177–203 New York: Wiley;
    [Google Scholar]
  20. Gram H. C.. 1884; Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med2:185–189 (in German)
    [Google Scholar]
  21. Gray N. D., Sherry A., Larter S. R., Erdmann M., Leyris J., Liengen T., Beeder J., Head I. M.. 2009; Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles13:511–519 [CrossRef][PubMed]
    [Google Scholar]
  22. Hazen T. C., Dubinsky E. A., DeSantis T. Z., Andersen G. L., Piceno Y. M., Singh N., Jansson J. K., Probst A., Borglin S. E., other authors. 2010; Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science330:204–208 [CrossRef][PubMed]
    [Google Scholar]
  23. He Y., Xiao X., Wang F.. 2013; Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. Front Microbiol4:148 [CrossRef][PubMed]
    [Google Scholar]
  24. Head I. M., Jones D. M., Röling W. F.. 2006; Marine microorganisms make a meal of oil. Nat Rev Microbiol4:173–182 [CrossRef][PubMed]
    [Google Scholar]
  25. Huson D. H., Scornavacca C.. 2012; Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol61:1061–1067 [CrossRef][PubMed]
    [Google Scholar]
  26. Jones D. M., Head I. M., Gray N. D., Adams J. J., Rowan A. K., Aitken C. M., Bennett B., Huang H., Brown A., other authors. 2008; Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature451:176–180 [CrossRef][PubMed]
    [Google Scholar]
  27. Khelifi N., Ali O. A., Roche P., Grossi V., Brochier-Armanet C., Valette O., Ollivier B., Dolla A., Hirschler-Réa A.. 2014; Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus . ISME J8:2153–2166[CrossRef]
    [Google Scholar]
  28. Kleindienst S., Ramette A., Amann R., Knittel K.. 2012; Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol14:2689–2710 [CrossRef][PubMed]
    [Google Scholar]
  29. Kowalewski E., Rueslåtten I., Gilje E., Sunde E., Bødtker G., Lillebø B. L. P., Torsvik T., Stensen J.Å., Bjørkvik B., Strand K. A.. 2005; Interpretation of microbial oil recovery from laboratory experiments. Presented at IOR 2005, 13th European Symposium on Improved Oil Recovery, Budapest, Hungary25–27:April2005
    [Google Scholar]
  30. Kvenvolden K. A., Cooper C. K.. 2003; Natural seepage of crude oil into the marine environment. Geo-Mar Lett23:140–146 [CrossRef]
    [Google Scholar]
  31. Larter S. R., Head I. M., Huang H., Bennett B., Jones M., Aplin A. C., Murray A., Erdmann M., Wilhelms A., Di Primio R.. 2005; Biodegradation, gas destruction and methane generation in deep subsurface petroleum reservoirs: an overview. In Geological Society, Petroleum Geology Conference Seriesvol. 6 pp633–639Edited by Doré A. G., Vining B. A.. London: Geological Society; [CrossRef]
    [Google Scholar]
  32. Leuthner L., Leutwein C., Schulz H., Hört P., Heahnel W., Schiltz E., Schägger H., Heider H.. 1998; Biochemical and genetic chaacterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol28:615–628[CrossRef]
    [Google Scholar]
  33. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  34. Lyles C. N., Le H. M., Beasley W. H., McInerney M. J., Suflita J. M.. 2014; Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion. Front Microbiol5:114 [CrossRef][PubMed]
    [Google Scholar]
  35. Mahon C., Lehman D., Manuselis G.. 2015; Textbook of Diagnostic Microbiology, 5th edn. Maryland Heights, MO: Saunders Elsevier;
    [Google Scholar]
  36. Mason O. U., Scott N. M., Gonzalez A., Robbins-Pianka A., Bælum J., Kimbrel J., Bouskill N. J., Prestat E., Borglin S., other authors. 2014; Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J8:1464–1475 [CrossRef][PubMed]
    [Google Scholar]
  37. Mbadinga S., Wang L.-Y., Zhou L., Liu J.-F., Gu J.-D., Mu B.-Z.. 2011; Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegradation65:1–13 [CrossRef]
    [Google Scholar]
  38. Mueller R. F., Nielsen P. H.. 1996; Characterization of thermophilic consortia from two souring oil reservoirs. Appl Environ Microbiol62:3083–3087[PubMed]
    [Google Scholar]
  39. Muyzer G., Stams A. J.. 2008; The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol6:441–454[PubMed]
    [Google Scholar]
  40. Pedersen R. B., Rapp H. T., Thorseth I. H., Lilley M. D., Barriga F. J., Baumberger T., Flesland K., Fonseca R., Früh-Green G. L., Jorgensen S. L.. 2010; Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun1:126 [CrossRef][PubMed]
    [Google Scholar]
  41. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  42. Pruesse E., Peplies J., Glöckner F. O.. 2012; sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  43. Rabus R., Jarling R., Lahme S., Kühner S., Heider J., Widdel F., Wilkes H.. 2011; Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol13:2576–2586 [CrossRef][PubMed]
    [Google Scholar]
  44. Rozanova E. P., Savvichev A. S., Karavaiko S. G., Miller Y. M.. 1995; Microbial processes in the Savuiskoe oil field in the Ob’ region. Microbiology (English translation of Mikrobiologiia)64:85–90
    [Google Scholar]
  45. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F.. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature372:455–458 [CrossRef][PubMed]
    [Google Scholar]
  46. Schink B., Stams A. J.. 2006; Syntrophism among prokaryotes. In The Prokaryotes, 3rd edn.vol. 2 pp309–335Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  47. Schrope M.. 2013; Dirty blizzard buried Deepwater Horizon oil. NATNEWS 26 January2013 [CrossRef]
    [Google Scholar]
  48. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  49. Simoneit B.. 1990; Petroleum generation, an easy and widespread process in hydrothermal systems: an overview. Appl Geochem5:3–15 [CrossRef]
    [Google Scholar]
  50. Sorokin D. Y., Tourova T. P., Panteleeva A. N., Kaparullina E. N., Muyzer G.. 2012; Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hypersaline soda lakes. Extremophiles16:307–315 [CrossRef][PubMed]
    [Google Scholar]
  51. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  52. Takai K., Inoue A., Horikoshi K.. 2002; Methanothermococcus okinawensis. sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol52:1089–1095[PubMed]
    [Google Scholar]
  53. Teske A., Callaghan A. V., LaRowe D. E.. 2014; Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol5:362 [CrossRef][PubMed]
    [Google Scholar]
  54. Wenger L. M., Davis C. L., Isaksen G. H.. 2002; Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Eval Eng5:375–383 [CrossRef]
    [Google Scholar]
  55. Whitman W. B., Bowen T. L., Boone D. R.. 2006; The methanogenic bacteria. In The Prokaryotes, 3rd edn.vol. 3 pp165–207Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  56. Wildgruber G., Thomm M., König H., Ober K., Richiuto T., Stetter K. O.. 1982; Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae . Arch Microbiol132:31–36 [CrossRef]
    [Google Scholar]
  57. Wilkes H., Kühner S., Bolm C., Fischer T., Classen A., Widdel F., Rabus R.. 2003; Formation of n-alkane-and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem34:1313–1323 [CrossRef]
    [Google Scholar]
  58. Zengler K., Richnow H. H., Rosselló-Mora R., Michaelis W., Widdel F.. 1999; Methane formation from long-chain alkanes by anaerobic microorganisms. Nature401:266–269 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000934
Loading
/content/journal/ijsem/10.1099/ijsem.0.000934
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error