1887

Abstract

A strictly anaerobic, mesophilic, syntrophic, alkane-degrading strain, L81, was isolated from a biofilm sampled from a black smoker chimney at the Loki's Castle vent field. Cells were straight, rod-shaped, Gram-positive-staining and motile. Growth was observed at pH 6.2–9.5, 14–42 °C and 0.5–6 % (w/w) NaCl, with optima at pH 7.0–8.2, 37 °C and 3 % (w/w) NaCl. Proteinaceous substrates, sugars, organic acids and hydrocarbons were utilized for growth. Thiosulfate was used as an external electron acceptor during growth on crude oil. Strain L81 was capable of syntrophic hydrocarbon degradation when co-cultured with a methanogenic archaeon, designated strain LG6, isolated from the same enrichment. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain L81 is affiliated with the family , and is most closely related to the type strains of (92 % sequence similarity) and (90 %). The major cellular fatty acids of strain L81 were C, anteiso-C and C, and the profile was distinct from those of the species of the genus . The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids, four unidentified glycolipids and two unidentified phosphoglycolipids. The G+C content of genomic DNA was determined to be 31.7 mol%. Based on our phenotypic, phylogenetic and chemotaxonomic results, strain L81 is considered to represent a novel species of a new genus of the family , for which we propose the name gen. nov., sp. nov. The type strain of is L81 ( = DSM 29592 = JCM 30920). We also provide emended descriptions of and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000934
2016-04-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1724.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000934&mimeType=html&fmt=ahah

References

  1. Adams M. M., Hoarfrost A. L., Bose A., Joye S. B., Girguis P. R. 2013; Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front Microbiol 4:110 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  3. Bachmann R., Johnson A., Edyvean R. G. 2014; Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation 86:225–237 [View Article]
    [Google Scholar]
  4. Barman Skaare B., Wilkes H., Vieth A., Rein E., Barth T. 2007; Alteration of crude oils from the Troll area by biodegradation: analysis of oil and water samples. Org Geochem 38:1865–1883 [View Article]
    [Google Scholar]
  5. Bazylinski D. A., Wirsen C. O., Jannasch H. W. 1989; Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl Environ Microbiol 55:2832–2836[PubMed]
    [Google Scholar]
  6. Berdugo-Clavijo C., Gieg L. M. 2014; Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol 5:197 [View Article][PubMed]
    [Google Scholar]
  7. Bødtker G., Hvidsten I. V., Barth T., Torsvik T. 2009; Hydrocarbon degradation by Dietzia sp., A14101 isolated from an oil reservoir model column. Antonie van Leeuwenhoek 96:459–469 [View Article][PubMed]
    [Google Scholar]
  8. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Lebedinsky A. V., Chernyh N. A., Nazina T. N., Ivoilov V. S., Belyaev S. S., Boulygina E. S., Lysov Y. P., other authors. 2003; Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151 [View Article][PubMed]
    [Google Scholar]
  9. Callaghan A. V., Wawrik B., Ní Chadhain S. M., Young L. Y., Zylstra G. J. 2008; Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148 [View Article][PubMed]
    [Google Scholar]
  10. Callaghan A. V., Morris B. E., Pereira I. A., McInerney M. J., Austin R. N., Groves J. T., Kukor J. J., Suflita J. M., Young L. Y. 2012; & other authors The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113 [View Article][PubMed]
    [Google Scholar]
  11. Cheng L., Shi S., Li Q., Chen J., Zhang H., Lu Y. 2014; Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One 9:e113253 [View Article][PubMed]
    [Google Scholar]
  12. Dahle H., Birkeland N.-K.K. 2006; Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545 [View Article][PubMed]
    [Google Scholar]
  13. Dahle H., Økland I., Thorseth I. H., Pederesen R. B., Steen I. H. 2015; Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME J 9:1593–1606 [View Article][PubMed]
    [Google Scholar]
  14. Davidova I. A., Duncan K. E., Choi O. K., Suflita J. M. 2006; Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742 [View Article][PubMed]
    [Google Scholar]
  15. Dienes L., Weinberger H. J. 1951; The L forms of bacteria. Bacteriol Rev 15:245–288[PubMed]
    [Google Scholar]
  16. Dolfing J., Larter S. R., Head I. M. 2008; Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452 [View Article][PubMed]
    [Google Scholar]
  17. Dubinsky E. A., Conrad M. E., Chakraborty R., Bill M., Borglin S. E., Hollibaugh J. T., Mason O. U., Piceno Y. M., Reid F. C., other authors. 2013; Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867 [View Article][PubMed]
    [Google Scholar]
  18. Gieg L. M., Duncan K. E., Suflita J. M. 2008; Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029 [View Article][PubMed]
    [Google Scholar]
  19. Giovannoni S. J. 1991 The Polymerase Chain Reaction pp 177–203 New York: Wiley;
    [Google Scholar]
  20. Gram H. C. 1884; Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med 2:185–189 (in German)
    [Google Scholar]
  21. Gray N. D., Sherry A., Larter S. R., Erdmann M., Leyris J., Liengen T., Beeder J., Head I. M. 2009; Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13:511–519 [View Article][PubMed]
    [Google Scholar]
  22. Hazen T. C., Dubinsky E. A., DeSantis T. Z., Andersen G. L., Piceno Y. M., Singh N., Jansson J. K., Probst A., Borglin S. E., other authors. 2010; Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208 [View Article][PubMed]
    [Google Scholar]
  23. He Y., Xiao X., Wang F. 2013; Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. Front Microbiol 4:148 [View Article][PubMed]
    [Google Scholar]
  24. Head I. M., Jones D. M., Röling W. F. 2006; Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182 [View Article][PubMed]
    [Google Scholar]
  25. Huson D. H., Scornavacca C. 2012; Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067 [View Article][PubMed]
    [Google Scholar]
  26. Jones D. M., Head I. M., Gray N. D., Adams J. J., Rowan A. K., Aitken C. M., Bennett B., Huang H., Brown A., other authors. 2008; Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180 [View Article][PubMed]
    [Google Scholar]
  27. Khelifi N., Ali O. A., Roche P., Grossi V., Brochier-Armanet C., Valette O., Ollivier B., Dolla A., Hirschler-Réa A. 2014; Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus . ISME J 8:2153–2166 [CrossRef]
    [Google Scholar]
  28. Kleindienst S., Ramette A., Amann R., Knittel K. 2012; Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710 [View Article][PubMed]
    [Google Scholar]
  29. Kowalewski E., Rueslåtten I., Gilje E., Sunde E., Bødtker G., Lillebø B. L. P., Torsvik T., Stensen J.Å., Bjørkvik B., Strand K. A. 2005; Interpretation of microbial oil recovery from laboratory experiments. Presented at IOR 2005, 13th European Symposium on Improved Oil Recovery, Budapest, Hungary 25–27:April2005
    [Google Scholar]
  30. Kvenvolden K. A., Cooper C. K. 2003; Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23:140–146 [View Article]
    [Google Scholar]
  31. Larter S. R., Head I. M., Huang H., Bennett B., Jones M., Aplin A. C., Murray A., Erdmann M., Wilhelms A., Di Primio R. 2005; Biodegradation, gas destruction and methane generation in deep subsurface petroleum reservoirs: an overview. In Geological Society, Petroleum Geology Conference Series vol. 6 pp 633–639Edited by Doré A. G., Vining B. A. London: Geological Society; [View Article]
    [Google Scholar]
  32. Leuthner L., Leutwein C., Schulz H., Hört P., Heahnel W., Schiltz E., Schägger H., Heider H. 1998; Biochemical and genetic chaacterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628 [CrossRef]
    [Google Scholar]
  33. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  34. Lyles C. N., Le H. M., Beasley W. H., McInerney M. J., Suflita J. M. 2014; Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion. Front Microbiol 5:114 [View Article][PubMed]
    [Google Scholar]
  35. Mahon C., Lehman D., Manuselis G. 2015 Textbook of Diagnostic Microbiology, 5th edn. Maryland Heights, MO: Saunders Elsevier;
    [Google Scholar]
  36. Mason O. U., Scott N. M., Gonzalez A., Robbins-Pianka A., Bælum J., Kimbrel J., Bouskill N. J., Prestat E., Borglin S., other authors. 2014; Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475 [View Article][PubMed]
    [Google Scholar]
  37. Mbadinga S., Wang L.-Y., Zhou L., Liu J.-F., Gu J.-D., Mu B.-Z. 2011; Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegradation 65:1–13 [View Article]
    [Google Scholar]
  38. Mueller R. F., Nielsen P. H. 1996; Characterization of thermophilic consortia from two souring oil reservoirs. Appl Environ Microbiol 62:3083–3087[PubMed]
    [Google Scholar]
  39. Muyzer G., Stams A. J. 2008; The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454[PubMed]
    [Google Scholar]
  40. Pedersen R. B., Rapp H. T., Thorseth I. H., Lilley M. D., Barriga F. J., Baumberger T., Flesland K., Fonseca R., Früh-Green G. L., Jorgensen S. L. 2010; Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun 1:126 [View Article][PubMed]
    [Google Scholar]
  41. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  42. Pruesse E., Peplies J., Glöckner F. O. 2012; sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  43. Rabus R., Jarling R., Lahme S., Kühner S., Heider J., Widdel F., Wilkes H. 2011; Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586 [View Article][PubMed]
    [Google Scholar]
  44. Rozanova E. P., Savvichev A. S., Karavaiko S. G., Miller Y. M. 1995; Microbial processes in the Savuiskoe oil field in the Ob’ region. Microbiology (English translation of Mikrobiologiia) 64:85–90
    [Google Scholar]
  45. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458 [View Article][PubMed]
    [Google Scholar]
  46. Schink B., Stams A. J. 2006; Syntrophism among prokaryotes. In The Prokaryotes, 3rd edn. vol. 2 pp 309–335Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; [View Article]
    [Google Scholar]
  47. Schrope M. 2013; Dirty blizzard buried Deepwater Horizon oil. NATNEWS 26 January2013 [View Article]
    [Google Scholar]
  48. Schumann P. 2011; Peptidoglycan structure. Methods Microbiol 38:101–129 [View Article]
    [Google Scholar]
  49. Simoneit B. 1990; Petroleum generation, an easy and widespread process in hydrothermal systems: an overview. Appl Geochem 5:3–15 [View Article]
    [Google Scholar]
  50. Sorokin D. Y., Tourova T. P., Panteleeva A. N., Kaparullina E. N., Muyzer G. 2012; Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hypersaline soda lakes. Extremophiles 16:307–315 [View Article][PubMed]
    [Google Scholar]
  51. Stamatakis A. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  52. Takai K., Inoue A., Horikoshi K. 2002; Methanothermococcus okinawensis. sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095[PubMed]
    [Google Scholar]
  53. Teske A., Callaghan A. V., LaRowe D. E. 2014; Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol 5:362 [View Article][PubMed]
    [Google Scholar]
  54. Wenger L. M., Davis C. L., Isaksen G. H. 2002; Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Eval Eng 5:375–383 [View Article]
    [Google Scholar]
  55. Whitman W. B., Bowen T. L., Boone D. R. 2006; The methanogenic bacteria. In The Prokaryotes, 3rd edn. vol. 3 pp 165–207Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; [View Article]
    [Google Scholar]
  56. Wildgruber G., Thomm M., König H., Ober K., Richiuto T., Stetter K. O. 1982; Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae . Arch Microbiol 132:31–36 [View Article]
    [Google Scholar]
  57. Wilkes H., Kühner S., Bolm C., Fischer T., Classen A., Widdel F., Rabus R. 2003; Formation of n-alkane-and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem 34:1313–1323 [View Article]
    [Google Scholar]
  58. Zengler K., Richnow H. H., Rosselló-Mora R., Michaelis W., Widdel F. 1999; Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.000934
Loading
/content/journal/ijsem/10.1099/ijsem.0.000934
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error