1887

Abstract

A novel bacterial strain, CJ22, was isolated from soil of a ginseng field located in Anseong, Korea. Cells of strain CJ22 were aerobic, Gram-stain-positive, endospore-forming, motile, oxidase- and catalase-positive and rod-shaped. The isolate grew optimally at pH 7 and 30 °C. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CJ22 belonged to the genus , displaying highest sequence similarity of 97.3 % with Gsoil 349. DNA–DNA relatedness between strain CJ22 and its closest relative was 35.5 % (reciprocal value, 23.8 %). The phenotypic features of strain CJ22 also distinguished it from related species of the genus . The diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. The major isoprenoid quinone was menaquinone MK-7 and the major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, lysyl-phosphatidylglycerol, two unidentified phospholipids and two unidentified aminophospholipids. The predominant cellular fatty acids of strain CJ22 were anteiso-C, iso-C and C. The DNA G+C content was 63.1 mol%. Based on data from this polyphasic taxonomic study, strain CJ22 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CJ22 ( = KACC 17501 = JCM 19227).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000933
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1713.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000933&mimeType=html&fmt=ahah

References

  1. Cho E.-A., Lee J.-S., Lee K. C., Jung H.-C., Pan J.-G., Pyun Y.-R.. 2007; Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol57:2902–2907 [CrossRef][PubMed]
    [Google Scholar]
  2. Choi J.-H., Cha C.-J.. 2014; Bacillus panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol64:901–906 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp267–287Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol39:224–229
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Flores-Félix J. D., Carro L., Ramírez-Bahena M.-H., Tejedor C., Igual J. M., Peix A., Velázquez E.. 2014; Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol64:83–87 [CrossRef][PubMed]
    [Google Scholar]
  7. García-Fraile P., Velázquez E., Mateos P. F., Martínez-Molina E., Rivas R.. 2008; Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol58:1855–1859 [CrossRef][PubMed]
    [Google Scholar]
  8. Huang Z., Yu Y. J., Bao Y. Y., Xia L., Sheng X. F., He L. Y.. 2014; Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol64:3320–3324 [CrossRef][PubMed]
    [Google Scholar]
  9. Jiang F., Dai J., Wang Y., Xue X., Xu M., Li W., Fang C., Peng F.. 2012; Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol62:817–821 [CrossRef][PubMed]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp21–132Edited by Munro H. N.. New York: Academic Press; [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J.. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  12. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J.-S.. 2010; Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol60:2284–2287 [CrossRef][PubMed]
    [Google Scholar]
  13. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J.-S.. 2012; Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol62:1921–1925 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim S.-J., Weon H.-Y., Kim Y.-S., Anandham R., Jeon Y.-A., Hong S.-B., Kwon S.-W.. 2010; Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol60:526–530 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  18. Shiratori H., Tagami Y., Beppu T., Ueda K.. 2010; Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol60:1344–1348 [CrossRef][PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Kreig N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  23. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  25. Yoon M. H., Ten L. N., Im W. T.. 2007; Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol17:913–918[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000933
Loading
/content/journal/ijsem/10.1099/ijsem.0.000933
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error