1887

Abstract

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, belonging to the family , designated strain MME-075, was isolated from a tidal flat. Strain MME-075 grew with 1–5 % (w/v) NaCl at 20–35 °C and at pH 7–9. Optimal growth occurred with 2 % (w/v) NaCl at 25–30 °C and at pH 7. The dominant respiratory quinone was ubiquinone-10, whereas summed feature 8 (Cω7 and/or Cω6), 11-methyl Cω7, and C were the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified lipid. The genomic DNA G+C content was 62.1 mol%. The highest 16S rRNA gene sequence similarity values were between strain MME-075 and , , and and were 97.6, 97.5, 97.2 and 96.2 %, respectively. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees, based on 16S rRNA gene sequences, revealed that strain MME-075 clustered with species of the genus . Based on phenotypic and phylogenetic taxonomic properties, this strain is proposed as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MME-075 ( = KCCM 43143 = JCM 30758).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000931
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1666.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000931&mimeType=html&fmt=ahah

References

  1. Agarwal S., Hunnicutt D. W., McBride M. J.. 1997; Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A94:12139–12144 [CrossRef][PubMed]
    [Google Scholar]
  2. Arahal D. R., Macián M. C., Garay E., Pujalte M. J.. 2005; Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol55:2371–2376 [CrossRef][PubMed]
    [Google Scholar]
  3. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F.. 2002; Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature415:630–633 [CrossRef][PubMed]
    [Google Scholar]
  4. Benson H. J.. 2002; Microbiological Application: a Laboratory Manual in General Microbiology New York: McGraw-Hill;
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070[PubMed]
    [Google Scholar]
  6. Brinkhoff T., Giebel H. A., Simon M.. 2008; Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol189:531–539 [CrossRef][PubMed]
    [Google Scholar]
  7. Cha I. T., Park S. J., Kim S. J., Kim J. G., Jung M. Y., Shin K. S., Kwon K. K., Yang S. H., Seo Y. S., Rhee S. K.. 2013; Marinoscillum luteum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol63:3475–3480 [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  12. Forbes L.. 1981; Rapid flagella stain. J Clin Microbiol13:807–809[PubMed]
    [Google Scholar]
  13. González C., Gutiérrez C., Ramirez C.. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  14. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B.. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  15. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  16. Hwang C. Y., Bae G. D., Yih W., Cho B. C.. 2009; Marivita cryptomonadis gen. nov., sp. nov. and Marivita litorea sp. nov., of the family Rhodobacteraceae, isolated from marine habitats. Int J Syst Evol Microbiol59:1568–1575 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambrige University Press; [CrossRef]
    [Google Scholar]
  19. Komagata K., Suzuki K.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  20. Kovacs N.. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature178:703 [CrossRef][PubMed]
    [Google Scholar]
  21. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackbrandt E., Goodfellow M.. Chichester: John Wiley;
    [Google Scholar]
  22. Lee J. B., Kim H., Park D. S., Yang J. H., Chun Y. Y., Lee K. H., Bae K. S.. 2014; Pseudoruegeria limi sp. nov. isolated from mud flats in the Yellow Sea in Korea. Antonie van Leeuwenhoek105:987–994 [CrossRef][PubMed]
    [Google Scholar]
  23. Leifson E.. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol85:1183–1184[PubMed]
    [Google Scholar]
  24. Mesbah M., Whitman W. B.. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+ cytosine of DNA. J Chromatogr A479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  25. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  26. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An intergrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  27. Nedashkovskaya O. I., Kim S. B., Kwak J., Mikhailov V. V., Bae K. S.. 2006; Mariniflexile gromovii gen. nov., sp. nov., a gliding bacterium isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol56:1635–1638 [CrossRef][PubMed]
    [Google Scholar]
  28. Oz A., Sabehi G., Koblízek M., Massana R., Béjà O.. 2005; Roseobacter-like bacteria in red and mediterranean sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol71:344–353 [CrossRef][PubMed]
    [Google Scholar]
  29. Park S., Lee M. H., Lee J. S., Oh T. K., Yoon J. H.. 2012; Thalassobius maritimus sp. nov., isolated from seawater. Int J Syst Evol Microbiol62:8–12 [CrossRef][PubMed]
    [Google Scholar]
  30. Park S., Jung Y. T., Kim S. I., Yoon J. H.. 2013; Thalassococcus lentus sp. nov., an alphaproteobacterium isolated from seawater of a seaweed farm. Antonie van Leeuwenhoek103:465–473 [CrossRef][PubMed]
    [Google Scholar]
  31. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  32. Roh S. W., Sung Y., Nam Y. D., Chang H. W., Kim K. H., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W.. 2008; Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol46:40–44 [CrossRef][PubMed]
    [Google Scholar]
  33. Rüger H. J., Höfle M. G.. 1992; Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov., Agrobacterium ferrugineum sp. nov., nom. rev., Agrobacterium gelatinovorum sp. nov., nom. rev., and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol42:133–143 [CrossRef][PubMed]
    [Google Scholar]
  34. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  35. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  36. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  38. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  39. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  40. Uchino Y., Hirata A., Yokota A., Sugiyama J.. 1998; Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol44:201–210 [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  42. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  43. Widdel F., Bak F.. 1992; Gram-negative mesophilic sulfate reducing bacteria. In The prokaryotes, 2nd edn. pp3352–3378Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer; [CrossRef]
    [Google Scholar]
  44. Wolin E. A., Wolin M. J., Wolfe R. S.. 1963; Formation of methane by bacterial extracts. J Biol Chem238:2882–2886[PubMed]
    [Google Scholar]
  45. Xue Y., Zhang X., Zhou C., Zhao Y., Cowan D. A., Heaphy S., Grant W. D., Jones B. E., Ventosa A., Ma Y.. 2006; Caldalkalibacillus thermarum gen. nov., sp. nov., a novel alkalithermophilic bacterium from a hot spring in China. Int J Syst Evol Microbiol56:1217–1221 [CrossRef][PubMed]
    [Google Scholar]
  46. Yi H., Chun J.. 2006; Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol44:171–176[PubMed]
    [Google Scholar]
  47. Yoon J. H., Kang S. J., Lee S. Y., Oh K. H., Oh T. K.. 2010; Planococcus salinarum sp. nov., isolated from a marine solar saltern, and emended description of the genus Planococcus. Int J Syst Evol Microbiol60:754–758 [CrossRef][PubMed]
    [Google Scholar]
  48. Yoon J. H., Kang S. J., Lee S. Y.. 2012; Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie van Leeuwenhoek101:803–810 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000931
Loading
/content/journal/ijsem/10.1099/ijsem.0.000931
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error