1887

Abstract

Analysis of D1/D2 large-subunit (LSU) rRNA gene sequences predicted that 17 yeast isolates, mainly from viscous gels (biofilms) taken from the stone chamber interior of the Kitora tumulus in Nara, Japan, were placed in the Yamadazyma and Zygoascus clades. Polyphasic characterization, including morphological, physiological and chemotaxonomic characteristics, multigene sequence divergence and DNA–DNA hybridization, strongly suggested the assignment of one novel species to each of the clades; these are Yamadazyma kitorensis f.a., sp. nov., with the type strain JCM 31005 (ex-type CBS 14158 = isolate K8617-6-8), and Zygoascus biomembranicola f.a., sp. nov., with the type strain JCM 31007 (ex-type CBS 14157 = isolate K61208-2-11). Furthermore, the transfer of five known species of the genus Candida as novel combinations to the genera Yamadazyma and Zygoascus is proposed; these are Yamadazyma olivae f.a., comb. nov. (type strain CBS 11171 = ATCC MYA-4568), Yamadazyma tumulicola f.a., comb. nov. (type strain JCM 15403 = ex-type CBS 10917 = isolate T6517-9-5), Yamadazyma takamatsuzukensis f.a., comb. nov. (type strain JCM 15410 = CBS 10916 = isolate T4922-1-1), Zygoascus polysorbophila f.a., comb. nov. (type strain NRRL Y-27161 = CBS 7317) and Zygoascus bituminiphila f.a., comb. nov. (type strain CBS 8813 = MUCL 41424).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000930
2016-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1692.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000930&mimeType=html&fmt=ahah

References

  1. Daniel H. M., Lachance M. A., Kurtzman C. P.. ( 2014;). On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 106: 67–84 [CrossRef] [PubMed].
    [Google Scholar]
  2. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  5. Hawser S. P., Douglas L. J.. ( 1994;). Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62: 915–921 [PubMed].
    [Google Scholar]
  6. Ishizaki T., Kigawa R.. ( 2011;). Conservation of the mural paintings of the Takamatsuzuka and Kitora Tumuli in Japan. . In Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the International Symposium, Held in Paris, on 26–27 February 2009, pp. 261–274. Edited by Coye N.. Paris: Maison des sciences de l'Homme;.
    [Google Scholar]
  7. Jones M.. ( 2009;). Candida and the Asuga [sic] beauties. Microbiol Today 36: 46–47.
    [Google Scholar]
  8. Kigawa R., Sano C., Mabuchi H., Miura S.. ( 2005;). [Investigation of biological issues in the Kitora tumulus during its restoration work]. Sci Conserv 44: 165–171 (in Japanese).
    [Google Scholar]
  9. Kigawa R., Sano C., Ishizaki T., Miura S.. ( 2006;). [Concept and measures of the conservation of Takamatsuzuka tumulus for 30 years and the present situation of biodeterioration]. Sci Conserv 45: 33–58 (in Japanese).
    [Google Scholar]
  10. Kigawa R., Sano C., Ishizaki T., Miura S., Sugiyama J.. ( 2009a;). Biological issues of mural paintings of Takamatsuzuka and Kitora tumuli in Japan. . In Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, pp. 43–50. Edited by Sano C.. Tokyo: National Research Institute for Cultural Properties, Tokyo;.
    [Google Scholar]
  11. Kigawa R., Sano C., Mabuchi H., Kiyuna T., Tazato N., Nishijima M., Sugiyama J.. ( 2009b;). [Biological issues in Kitora tumulus during relocation works of the mural paintings]. Sci Conserv 48: 167–174 (in Japanese).
    [Google Scholar]
  12. Kigawa R., Sano C., Kiyuna T., Tazato N., Sugiyama J.. ( 2010;). [Use of ethanol and isopropanol as carbon sources by microorganisms isolated from Takamatsuzuka and Kitora tumuli]. Sci Conserv 49: 231–238 (in Japanese).
    [Google Scholar]
  13. Kigawa R., Sano C., Nishijima M., Tazato N., Kiyuna T., Hayakawa N., Kawanobe W., Udagawa S., Tateishi T., Sugiyama J.. ( 2013;). Investigation of acetic acid bacteria isolated from the Kitora tumulus in Japan and their involvement in the deterioration of the plaster of the mural paintings. Stud Conserv 58: 30–40 [CrossRef].
    [Google Scholar]
  14. Kigawa R., Kiyuna T., Tazato N., Sato Y., Sano C., Sugiyama J.. ( 2015;). [Summary of the microbial surveys of the Kitora tumulus from 2004 to 2013]. Sci Conserv 54: 83–109 (in Japanese).
    [Google Scholar]
  15. Kiyuna T., An K.-D., Kigawa R., Sano C., Miura S., Sugiyama J.. ( 2008;). Mycobiota of the Takamatsuzuka and Kitora tumuli in Japan, focusing on the molecular phylogenetic diversity of Fusarium and Trichoderma. Mycoscience 49: 298–311 [CrossRef].
    [Google Scholar]
  16. Kuraishi H., Katayama-Fujimura Y., Sugiyama J., Yokoyama T.. ( 1985;). Ubiquinone systems in fungi I. Distribution of ubiquinones in the major families of ascomycetes, basidiomycetes, and deuteromycetes, and their taxonomic implications. Trans Mycol Soc Jpn 26: 383–395.
    [Google Scholar]
  17. Kurtzman C. P.. ( 2007;). New anamorphic yeast species: Candida infanticola sp. nov., Candida polysorbophila sp. nov., Candida transvaalensis sp. nov. and Trigonopsis californica sp. nov. Antonie van Leeuwenhoek 92: 221–231 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kurtzman C. P., Robnett C. J.. ( 1998;). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kurtzman C. P., Robnett C. J.. ( 2003;). Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3: 417–432 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kurtzman C. P., Robnett C. J.. ( 2007;). Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations. FEMS Yeast Res 7: 141–151 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kurtzman C. P., Fell J. W., Boekhout T., Robert V.. ( 2011a;). Methods for the isolation, phenotypic characterization and maintenance of yeasts. . In The Yeasts, a Taxonomic Study, 5th edn., pp. 87–110. Edited by Kurtzman C. P., Fell J. W., Boekhout T.. Amsterdam:: Elsevier; [CrossRef]
    [Google Scholar]
  22. Kurtzman C. P., Fell J. W., Boekhout T.. ( 2011b;). Nuclear DNA reassociation. . In The Yeasts, a Taxonomic Study, 5th edn., pp. 137–144. Edited by Kurtzman C. P., Fell J. W., Boekhout T.. Amsterdam:: Elsevier; [CrossRef]
    [Google Scholar]
  23. Lachance M. A., Boekhout T., Scorzetti G., Fell J. W., Kurtzman C. P.. ( 2011;). Candida Berkhout. . In The Yeasts, a Taxonomic Study, 5th edn., pp. 987–1278. Edited by Kurtzman C. P., Fell J. W., Boekhout T.. Amsterdam:: Elsevier; [CrossRef]
    [Google Scholar]
  24. McNeill J., Barrie F. R., Buck W. R., Demoulin V., Greuter W., Hawksworth D. L., Herendeen P. S., Knapp S., Marhold K., other authors. (editors) ( 2012;). International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code) Koenigstein: Koeltz Scientific Books;.
    [Google Scholar]
  25. Nagatsuka Y., Kawasaki H., Limtong S., Mikata K., Seki T.. ( 2002;). Citeromyces siamensis sp. nov., a novel halotolerant yeast isolated in Thailand. Int J Syst Evol Microbiol 52: 2315–2319 [PubMed].
    [Google Scholar]
  26. Nagatsuka Y., Kawasaki H., Mikata K., Seki T.. ( 2005;). Candida khmerensis sp. nov., a novel cation-tolerant yeast isolated from dry salted shrimp and sewage in Cambodia. J Gen Appl Microbiol 51: 235–243 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nagatsuka Y., Kiyuna T., Kigawa R., Sano C., Miura S., Sugiyama J.. ( 2009;). Candida tumulicola sp. nov. and Candida takamatsuzukensis sp. nov., novel yeast species assignable to the Candida membranifaciens clade, isolated from the stone chamber of the Takamatsu-zuka tumulus. Int J Syst Evol Microbiol 59: 186–194 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nett J. E., Marchillo K., Spiegel C. A., Andes D. R.. ( 2010;). Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun 78: 3650–3659 [CrossRef] [PubMed].
    [Google Scholar]
  29. Nisiotou A. A., Panagou E. Z., Nychas G. J.. ( 2010;). Candida olivae sp. nov., a novel yeast species from ‘Greek-style’ black olive fermentation. Int J Syst Evol Microbiol 60: 1219–1223 [CrossRef] [PubMed].
    [Google Scholar]
  30. Norvell L. L.. ( 2011;). Fungal nomenclature. 1. Melbourne approves a new code. Mycotaxon 116: 481–490 [CrossRef].
    [Google Scholar]
  31. Robert V., Smith M. T.. ( 2011;). Zygoascus M.Th. Smith. . In The Yeasts, a Taxonomic Study, 5th edn., pp. 931–936. Edited by Kurtzman C. P., Fell J. W.. Amsterdam:: Elsevier; [CrossRef]
    [Google Scholar]
  32. Robert V., Bonjean B., Karutz M., Paschold H., Peeters W., Wubbolts M. G.. ( 2001;). Candida bituminiphila, a novel anamorphic species of yeast. Int J Syst Evol Microbiol 51: 2171–2176 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sugita T., Nishikawa A., Ikeda R., Shinoda T.. ( 1999;). Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J Clin Microbiol 37: 1985–1993 [PubMed].
    [Google Scholar]
  34. Sugiyama J., Kiyuna T., An K.-D., Nagatsuka Y., Handa Y., Tazato N., Hata-Tomota J., Nishijima M., Koide T., other authors. ( 2009;). Microbiological survey of the stone chamber of Takamatsu-zuka and Kitora tumuli, Nara Prefecture, Japan: a milestone in elucidating the cause of biodeterioration of mural paintings. . In Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, pp. 51–73. Edited by Sano C.. Tokyo: National Research Institute for Cultural Properties, Tokyo;.
    [Google Scholar]
  35. Suh S. O., Nguyen N. H., Blackwell M.. ( 2005;). Nine new Candida species near C. membranifaciens isolated from insects. Mycol Res 109: 1045–1056 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yamada Y., Okada T., Ueshima O., Kondô K.. ( 1973;). Coenzyme Q system in the classification of the ascosporogenous yeast genera Hansenula and Pichia. J Gen Appl Microbiol 19: 189–208 [CrossRef].
    [Google Scholar]
  39. Yamada Y., Kawasaki H., Nagatsuka Y., Mikata K., Seki T.. ( 1999;). The phylogeny of the cactophilic yeasts based on the 18S ribosomal RNA gene sequences: the proposals of Phaffomyces antillensis and Starmera caribaea, new combinations. Biosci Biotechnol Biochem 63: 827–832 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000930
Loading
/content/journal/ijsem/10.1099/ijsem.0.000930
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error