1887

Abstract

A Gram-stain-negative, motile, aerobic, rod- or ovoid-shaped bacterium, designated DB-1, was isolated from a tidal flat on the Yellow Sea in South Korea and subjected to a taxonomic study using a polyphasic approach. Strain DB-1 grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 0.5–2.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain DB-1 falls within the clade comprising species of the genus Marinobacterium, clustering coherently with the type strain of Marinobacterium nitratireducens and showing a sequence similarity value of 98.4 %. The novel strain exhibited 16S rRNA gene sequence similarities of 91.5–94.4 % to the type strains of other species of the genus Marinobacterium. Strain DB-1 contained Q-8 as the predominant ubiquinone and C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 as the major fatty acids. The major polar lipids detected in strain DB-1 were phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminolipid, one unidentified glycolipid, one unidentified phospholipid and two unidentified lipids. The DNA G+C content of strain DB-1 was 62.3 mol% and the mean DNA–DNA relatedness value with the type strain of M. nitratireducens was 21 ± 4.6 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain DB-1 is separated from recognized species of the genus Marinobacterium. On the basis of the data presented, strain DB-1 is considered to represent a novel species of the genus Marinobacterium, for which the name Marinobacterium aestuariivivens sp. nov. is proposed. The type strain is DB-1 ( = KCTC 42778 = NBRC 111756).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000927
2016-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1718.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000927&mimeType=html&fmt=ahah

References

  1. Alfaro-Espinoza G., Ullrich M. S.. ( 2014;). Marinobacterium mangrovicola sp. nov., a marine nitrogen-fixing bacterium isolated from mangrove roots of Rhizophora mangle. Int J Syst Evol Microbiol 64: 3988–3993 [CrossRef] [PubMed].
    [Google Scholar]
  2. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H.. ( 2000;). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50: 1563–1589 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  4. Baumann P., Baumann L.. ( 1981;). The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. . In The Prokaryotes, pp. 1302–1331. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.. Berlin: Springer;.
    [Google Scholar]
  5. Baumann L., Baumann P., Mandel M., Allen R. D.. ( 1972;). Taxonomy of aerobic marine eubacteria. J Bacteriol 110: 402–429 [PubMed].
    [Google Scholar]
  6. Bruns A., Rohde M., Berthe-Corti L.. ( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51: 1997–2006 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chang H.-W., Nam Y.-D., Kwon H.-Y., Park J. R., Lee J.-S., Yoon J.-H., An K.-G., Bae J.-W.. ( 2007;). Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 57: 77–80 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chimetto L. A., Cleenwerck I., Brocchi M., Willems A., De Vos P., Thompson F. L.. ( 2011;). Marinobacterium coralli sp. nov., isolated from mucus of coral (Mussismilia hispida). Int J Syst Evol Microbiol 61: 60–64 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cohen-Bazire G., Sistrom W. R., Stanier R. Y.. ( 1957;). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol 49: 25–68 [CrossRef] [PubMed].
    [Google Scholar]
  10. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;.
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  12. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B.. ( 1997;). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47: 369–376 [CrossRef] [PubMed].
    [Google Scholar]
  13. Huo Y.-Y., Xu X.-W., Cao Y., Wang C.-S., Zhu X.-F., Oren A., Wu M.. ( 2009;). Marinobacterium nitratireducens sp. nov. and Marinobacterium sediminicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 59: 1173–1178 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim H., Choo Y.-J., Song J., Lee J.-S., Lee K. C., Cho J.-C.. ( 2007;). Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 57: 1659–1662 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim J. M., Lee S. H., Jung J. Y., Jeon C. O.. ( 2010;). Marinobacterium lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 60: 1828–1831 [CrossRef] [PubMed].
    [Google Scholar]
  16. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  17. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  19. Park S., Park D.-S., Bae K. S., Yoon J.-H.. ( 2014;). Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 64: 1378–1383 [CrossRef] [PubMed].
    [Google Scholar]
  20. Parte A. C.. ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616 [CrossRef] [PubMed].
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  22. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T.. ( 2002;). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52: 739–747 [CrossRef] [PubMed].
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  24. Staley J. T.. ( 1968;). Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95: 1921–1942 [PubMed].
    [Google Scholar]
  25. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  27. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H.. ( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46: 502–505 [CrossRef].
    [Google Scholar]
  28. Yoon J.-H., Lee S. T., Park Y.-H.. ( 1998;). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48: 187–194 [CrossRef] [PubMed].
    [Google Scholar]
  29. Yoon J.-H., Kang K. H., Park Y.-H.. ( 2003;). Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 53: 449–454 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000927
Loading
/content/journal/ijsem/10.1099/ijsem.0.000927
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error