1887

Abstract

The taxonomic position of the halophilic actinobacterial strain, HS05-03, isolated from solar saltern soil, was determined using a polyphasic approach. Phylogenetic analysis based on the 16S rRNA gene sequence of the strain showed that it formed a distinct evolutionary lineage in the genus . The organism was most closely related to the type strains of the species (98.0 % similarity), (97.9 % similarity), (97.9 % similarity) and (97.8 % similarity). The whole-organism hydrolysates contained -diaminopimelic acid, arabinose, galactose and ribose. The predominant menaquinones were found to be MK-9(H) and MK-10(H). The acyl type of the peptidoglycan was -acetyl. The diagnostic phospholipid detected was phosphatidylcholine. The predominant cellular fatty acids were iso-C, anteiso-C and iso-C. The G+C content of the genomic DNA was 69.9 mol%. DNA–DNA hybridization values between strain HS05-03 and the type strains of the most closely related species were below the 70 % threshold. On the basis of the phenotypic and genotypic data, it is proposed that strain HS05-03 represents a novel species of the genus , with the name sp. nov. The type strain is HS05-03 ( = BCC 51286 = NBRC 109078).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000926
2016-04-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1660.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000926&mimeType=html&fmt=ahah

References

  1. Becker B., Lechevalier M. P., Lechevalier H. A. 1965; Chemical composition of cell-wall preparations from strains of various form–genera of aerobic actinomycetes. Appl Microbiol 13:236–243[PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.editors 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gochnauer M. B., Leppard G. G., Komaratat P., Kates M., Novitsky T., Kushner D. J. 1975; Isolation and characterization of Actinopolyspora halophila, gen. et sp. nov., an extremely halophilic actinomycete. Can J Microbiol 21:1500–1511 [View Article][PubMed]
    [Google Scholar]
  8. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as nocardiae. J Bacteriol 73:15–27[PubMed]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C.H.-N. 1974; Nocardia coeliaca. Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  10. Guan T. W., Liu Y., Zhao K., Xia Z. F., Zhang X. P., Zhang L. L. 2010; Actinopolyspora xinjiangensis sp. nov., a novel exteremely halophilic actinomycete isolated from a salt lake in Xinjiang, China. Antonie van Leeuwenhoek 98:447–453 [View Article][PubMed]
    [Google Scholar]
  11. Guan T.-W., Wei B., Zhang Y., Xia Z.-F., Che Z.-M., Chen X.-G., Zhang L.-L. 2013a; Actinopolyspora lacussalsi sp. nov. an extremely halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol 63:3009–3013 [View Article][PubMed]
    [Google Scholar]
  12. Guan T.-W., Zhao H.-P., Che Z.-M., Zhang X.-P., Zhang L.-L. 2013b; Actinopolyspora dayingensis sp. nov., a novel halophilic actinomycete isolated from a hypersaline lake. Antonie van Leeuwenhoek 104:787–792 [View Article][PubMed]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  14. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509 [View Article]
    [Google Scholar]
  15. Hozzein W. N., Goodfellow M. 2011; Actinopolyspora egyptensis sp. nov., a new halophilic actinomycete. Afr J Microbiol Res 5:100–105
    [Google Scholar]
  16. Jacobson E., Grauville W. C., Fogs C. E. 1958 Color Harmony Manual, 4 edn. Chicago: Container Corporation of America;
    [Google Scholar]
  17. Kataoka M., Ueda K., Kudo T., Seki T., Yoshida T. 1997; Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces . FEMS Microbiol Lett 151:249–255 [View Article][PubMed]
    [Google Scholar]
  18. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, England: John Innes Foundation;
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Lechevalier M. P., Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [View Article]
    [Google Scholar]
  21. Lechevalier M. P., De Bièvre C., Lechevalier H. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [View Article]
    [Google Scholar]
  22. Meklat A., Bouras N., Zitouni A., Mathieu F., Lebrihi A., Schumann P., Spröer C., Klenk H.-P., Sabaou N. 2013; Actinopolyspora righensis sp. nov., a novel halophilic actinomycete isolated from Saharan soil in Algeria. Antonie van Leeuwenhoek 104:301–307 [View Article][PubMed]
    [Google Scholar]
  23. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [View Article]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  25. Saker R., Bouras N., Meklat A., Zitouni A., Schumann P., Spröer C., Klenk H. P., Sabaou N. 2015; Actinopolyspora biskrensis sp. nov., a novel halophilic actinomycete isolated from Northern Sahara. Curr Microbiol 70:423–428 [View Article][PubMed]
    [Google Scholar]
  26. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  27. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  28. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  31. Tang S.-K., Wang Y., Klenk H.-P., Shi R., Lou K., Zhang Y.-J., Chen C., Ruan J.-S., Li W.-J. et al. 2011; Actinopolyspora alba sp. nov. and Actinopolyspora erythraea sp. nov., isolated from a salt field, and reclassification of Actinopolyspora iraqiensis Ruan et al. 1994 as a heterotypic synonym of Saccharomonospora halophila . Int J Syst Evol Microbiol 61:1693–1698 [View Article][PubMed]
    [Google Scholar]
  32. Tomiyasu I. 1982; Mycolic acid composition and thermally adaptative changes in Nocardia asteroides . J Bacteriol 151:828–837[PubMed]
    [Google Scholar]
  33. Uchida K., Aida K. O. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134 [View Article]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  35. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813[PubMed]
    [Google Scholar]
  36. Zhi X. Y., Li W. J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000926
Loading
/content/journal/ijsem/10.1099/ijsem.0.000926
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error