1887

Abstract

The taxonomic position of the halophilic actinobacterial strain, HS05-03, isolated from solar saltern soil, was determined using a polyphasic approach. Phylogenetic analysis based on the 16S rRNA gene sequence of the strain showed that it formed a distinct evolutionary lineage in the genus . The organism was most closely related to the type strains of the species (98.0 % similarity), (97.9 % similarity), (97.9 % similarity) and (97.8 % similarity). The whole-organism hydrolysates contained -diaminopimelic acid, arabinose, galactose and ribose. The predominant menaquinones were found to be MK-9(H) and MK-10(H). The acyl type of the peptidoglycan was -acetyl. The diagnostic phospholipid detected was phosphatidylcholine. The predominant cellular fatty acids were iso-C, anteiso-C and iso-C. The G+C content of the genomic DNA was 69.9 mol%. DNA–DNA hybridization values between strain HS05-03 and the type strains of the most closely related species were below the 70 % threshold. On the basis of the phenotypic and genotypic data, it is proposed that strain HS05-03 represents a novel species of the genus , with the name sp. nov. The type strain is HS05-03 ( = BCC 51286 = NBRC 109078).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000926
2016-04-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1660.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000926&mimeType=html&fmt=ahah

References

  1. Becker B., Lechevalier M. P., Lechevalier H. A.. 1965; Chemical composition of cell-wall preparations from strains of various form–genera of aerobic actinomycetes. Appl Microbiol13:236–243[PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. 1971; Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..editors 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gochnauer M. B., Leppard G. G., Komaratat P., Kates M., Novitsky T., Kushner D. J.. 1975; Isolation and characterization of Actinopolyspora halophila, gen. et sp. nov., an extremely halophilic actinomycete. Can J Microbiol21:1500–1511 [CrossRef][PubMed]
    [Google Scholar]
  8. Gordon R. E., Mihm J. M.. 1957; A comparative study of some strains received as nocardiae. J Bacteriol73:15–27[PubMed]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C.H.-N.. 1974; Nocardia coeliaca. Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol24:54–63 [CrossRef]
    [Google Scholar]
  10. Guan T. W., Liu Y., Zhao K., Xia Z. F., Zhang X. P., Zhang L. L.. 2010; Actinopolyspora xinjiangensis sp. nov., a novel exteremely halophilic actinomycete isolated from a salt lake in Xinjiang, China. Antonie van Leeuwenhoek98:447–453 [CrossRef][PubMed]
    [Google Scholar]
  11. Guan T.-W., Wei B., Zhang Y., Xia Z.-F., Che Z.-M., Chen X.-G., Zhang L.-L.. 2013a; Actinopolyspora lacussalsi sp. nov. an extremely halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol63:3009–3013 [CrossRef][PubMed]
    [Google Scholar]
  12. Guan T.-W., Zhao H.-P., Che Z.-M., Zhang X.-P., Zhang L.-L.. 2013b; Actinopolyspora dayingensis sp. nov., a novel halophilic actinomycete isolated from a hypersaline lake. Antonie van Leeuwenhoek104:787–792 [CrossRef][PubMed]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322 [CrossRef]
    [Google Scholar]
  14. Hayakawa M., Nonomura H.. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol65:501–509 [CrossRef]
    [Google Scholar]
  15. Hozzein W. N., Goodfellow M.. 2011; Actinopolyspora egyptensis sp. nov., a new halophilic actinomycete. Afr J Microbiol Res5:100–105
    [Google Scholar]
  16. Jacobson E., Grauville W. C., Fogs C. E.. 1958; Color Harmony Manual, 4 edn. Chicago: Container Corporation of America;
    [Google Scholar]
  17. Kataoka M., Ueda K., Kudo T., Seki T., Yoshida T.. 1997; Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. FEMS Microbiol Lett151:249–255 [CrossRef][PubMed]
    [Google Scholar]
  18. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, England: John Innes Foundation;
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Lechevalier M. P., Lechevalier H.. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol20:435–443 [CrossRef]
    [Google Scholar]
  21. Lechevalier M. P., De Bièvre C., Lechevalier H.. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol5:249–260 [CrossRef]
    [Google Scholar]
  22. Meklat A., Bouras N., Zitouni A., Mathieu F., Lebrihi A., Schumann P., Spröer C., Klenk H.-P., Sabaou N.. 2013; Actinopolyspora righensis sp. nov., a novel halophilic actinomycete isolated from Saharan soil in Algeria. Antonie van Leeuwenhoek104:301–307 [CrossRef][PubMed]
    [Google Scholar]
  23. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol27:104–117 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Saker R., Bouras N., Meklat A., Zitouni A., Schumann P., Spröer C., Klenk H. P., Sabaou N.. 2015; Actinopolyspora biskrensis sp. nov., a novel halophilic actinomycete isolated from Northern Sahara. Curr Microbiol70:423–428 [CrossRef][PubMed]
    [Google Scholar]
  26. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  27. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  28. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  29. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  31. Tang S.-K., Wang Y., Klenk H.-P., Shi R., Lou K., Zhang Y.-J., Chen C., Ruan J.-S., Li W.-J.. et al. 2011; Actinopolyspora alba sp. nov. and Actinopolyspora erythraea sp. nov., isolated from a salt field, and reclassification of Actinopolyspora iraqiensis Ruan et al. 1994 as a heterotypic synonym of Saccharomonospora halophila. Int J Syst Evol Microbiol61:1693–1698 [CrossRef][PubMed]
    [Google Scholar]
  32. Tomiyasu I.. 1982; Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol151:828–837[PubMed]
    [Google Scholar]
  33. Uchida K., Aida K. O.. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol30:131–134 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  35. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813[PubMed]
    [Google Scholar]
  36. Zhi X. Y., Li W. J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000926
Loading
/content/journal/ijsem/10.1099/ijsem.0.000926
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error