1887

Abstract

An obligately anaerobic, hyperthermophilic, organoheterotrophic archaeon, strain 1633, was isolated from a terrestrial hot spring of the Uzon Caldera (Kamchatka Peninsula, Russia). Cells were regular cocci, 0.5–0.9 μm in diameter, with one flagellum. The temperature range for growth was 80–95 °C, with an optimum at 84 °C. Strain 1633 grew on yeast extract, beef extract, peptone, cellulose and cellobiose. No growth was detected on other sugars or carbohydrates, organic acids, or under autotrophic conditions. The only detected growth products were CO, acetate, and H. The growth rate was stimulated by elemental sulfur, which was reduced to hydrogen sulfide. The -calculated G+C content of the genomic DNA of strain 1633 was 55.64 mol%. 16S rRNA gene sequence analysis placed strain 1633 together with the non-validly published ‘’ strain WB1 in a separate genus-level cluster within the family . Average nucleotide identity (ANI) results revealed 75.72 % identity between strain 1633 and ‘’ WB1. Based on these results we propose a novel genus and species with the name gen. nov., sp. nov. The type strain of the type species is 1633 ( = DSM 22663 = VKM B-2946).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000916
2016-03-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1407.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000916&mimeType=html&fmt=ahah

References

  1. Arab H., Völker H., Thomm M.. 2000; Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol50:2101–2108 [CrossRef][PubMed]
    [Google Scholar]
  2. Bidzhieva S.Kh, Derbikova K. S., Kublanov I. V., Bonch-Osmolovskaya E. A.. 2014; [Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory protiens (α- and β-keratins)]. Mikrobiologiia83:743–751 (in Russian)[PubMed]
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Slesarev A. I., Miroshnichenko M. L., Svetlichnaya T. P., Alekseev V. A.. 1988; Characterization of Desulfurococcus amylolyticus n. sp.–a novel extremely thermophilic archaebacterium isolated from Kamchatka and Kurils hot springs. Microbiology (English translation of Mikrobiologiia)57:94–101
    [Google Scholar]
  4. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Zavarzin G. A.. 1990; Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol154:556–559 [CrossRef]
    [Google Scholar]
  5. Burgess E. A., Unrine J. M., Mills G. L., Romanek C. S., Wiegel J.. 2012; Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol63:471–489 [CrossRef][PubMed]
    [Google Scholar]
  6. Chernyh N. A., Mardanov A. V., Gumerov V. M., Miroshnichenko M. L., Lebedinsky A. V., Merkel A. Y., Crowe D., Pimenov N. V., Rusanov I. I., other authors. 2015; Microbial life in Bourlyashchy, the hottest thermal pool of Uzon Caldera, Kamchatka. Extremophiles19:1157–1171 [CrossRef][PubMed]
    [Google Scholar]
  7. Edgar R. C.. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J.. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst Appl Microbiol8:106–113 [CrossRef]
    [Google Scholar]
  10. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  11. Huber H., Stetter K. O.. 2006; Desulfurococcales. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn.vol. 3 pp52–68Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  12. Kevbrin V. V., Zavarzin G. A.. 1992; The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology (English translation of Mikrobiologiia)61:812–817
    [Google Scholar]
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kublanov I. V., Bidjieva S. Kh., Mardanov A. V., Bonch-Osmolovskaya E. A.. 2009; Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. Int J Syst Evol Microbiol59:1743–1747 [CrossRef][PubMed]
    [Google Scholar]
  15. Mardanov A. V., Kochetkova T. V., Beletsky A. V., Bonch-Osmolovskaya E. A., Ravin N. V., Skryabin K. G.. 2012; Complete genome sequence of the hyperthermophilic cellulolytic crenarchaeon Thermogladius cellulolyticus 1633. J Bacteriol194:4446–4447 [CrossRef][PubMed]
    [Google Scholar]
  16. Menzel P., Gudbergsdóttir S. R., Rike A. G., Lin L., Zhang Q., Contursi P., Moracci M., Kristjansson J. K., Bolduc B., other authors. 2015; Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb Ecol70:411–424 [CrossRef][PubMed]
    [Google Scholar]
  17. Nei M., Kumar S.. 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  18. Osburn M. R., Amend J. P.. 2011; Thermogladius shockii gen. nov., sp. nov., a hyperthermophilic crenarchaeote from Yellowstone National Park, USA. Arch Microbiol193:45–52 [CrossRef][PubMed]
    [Google Scholar]
  19. Perevalova A. A., Svetlichny V. A., Kublanov I. V., Chernyh N. A., Kostrikina N. A., Tourova T. P., Kuznetsov B. B., Bonch-Osmolovskaya E. A.. 2005; Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus. Int J Syst Evol Microbiol55:995–999 [CrossRef][PubMed]
    [Google Scholar]
  20. Perevalova A. A., Kolganova T. V., Birkeland N.-K., Schleper C., Bonch-Osmolovskaya E. A., Lebedinsky A. V.. 2008; Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol74:7620–7628 [CrossRef][PubMed]
    [Google Scholar]
  21. Perevalova A. A., Bidzhieva S. Kh., Kublanov I. V., Hinrichs K. U., Liu X. L., Mardanov A. V., Lebedinsky A. V., Bonch-Osmolovskaya E. A.. 2010; Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov. Int J Syst Evol Microbiol60:2082–2088 [CrossRef][PubMed]
    [Google Scholar]
  22. Pitcher A., Hopmans E. C., Mosier A. C., Park S. J., Rhee S. K., Francis C. A., Schouten S., Sinninghe Damsté J.. 2011; Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl Environ Microbiol77:3468–3477 [CrossRef][PubMed]
    [Google Scholar]
  23. Prokofeva M. I., Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Kuznetsov B. B., Tourova T. P., Bonch-Osmolovskaya E. A.. 2000; Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol50:2001–2008 [CrossRef][PubMed]
    [Google Scholar]
  24. Prokofeva M. I., Kublanov I. V., Nercessian O., Tourova T. P., Kolganova T. V., Lebedinsky A. V., Bonch-Osmolovskaya E. A., Spring S., Jeanthon C.. 2005; Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles9:437–448 [CrossRef][PubMed]
    [Google Scholar]
  25. Prokofeva M. I., Kostrikina N. A., Kolganova T. V., Tourova T. P., Lysenko A. M., Lebedinsky A. V., Bonch-Osmolovskaya E. A.. 2009; Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol59:3116–3122 [CrossRef][PubMed]
    [Google Scholar]
  26. Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., Maruyama T.. 1996; Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int J Syst Bacteriol46:1070–1077 [CrossRef][PubMed]
    [Google Scholar]
  27. Sinninghe Damsté J. S., Schouten S., Hopmans E. C., van Duin A. C., Geenevasen J. A.. 2002; Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res43:1641–1651 [CrossRef][PubMed]
    [Google Scholar]
  28. Slobodkina G. B., Lebedinsky A. V., Chernyh N. A., Bonch-Osmolovskaya E. A., Slobodkin A. I.. 2015; Pyrobaculum ferrireducens sp. nov., a hyperthermophilic Fe(III)-, selenate- and arsenate-reducing crenarchaeon isolated from a hot spring. Int J Syst Evol Microbiol65:851–856 [CrossRef][PubMed]
    [Google Scholar]
  29. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A.. 2002; Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol52:1961–1967[PubMed]
    [Google Scholar]
  30. Sprott G. D.. 1992; Structures of archaebacterial membrane lipids. J Bioenerg Biomembr24:555–566 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  32. Trincone A., Nicolaus B., Palmieri G., De Rosa M., Huber R., Huber G., Stetter K. O., Gambacorta A.. 1992; Distribution of complex and core lipids within new hyperthermophilic members of the Archaea domain. Syst Appl Microbiol15:11–17 [CrossRef]
    [Google Scholar]
  33. Wemheuer B., Taube R., Akyol P., Wemheuer F., Daniel R.. 2013; Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Archaeavol. 2013: article ID 136714, 13 pages [CrossRef][PubMed]
    [Google Scholar]
  34. Wolin E. A., Wolin M. J., Wolfe R. S.. 1963; Formation of methane by bacterial extracts. J Biol Chem238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000916
Loading
/content/journal/ijsem/10.1099/ijsem.0.000916
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error